Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932222

ABSTRACT

Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages. Phylogenetic and recombination analyses based on the nucleotide sequences of the spike (S) 1 gene clustered a total of 205 isolates into twelve distinct lineages, with GI-19 as a predominant lineage (61.77 ± 4.56%) exhibiting an overall increasing trend over the past five years, and demonstrated that a majority of the variants were derived from gene recombination events. Further characterization of the growth and pathogenic properties of six representative isolates from different lineages classified four out of the six isolates as nephropathogenic types with mortality rates in one-day-old SPF chickens varying from 20-60%, one as a respiratory type with weak virulence, and one as a naturally occurring avirulent strain. Taken together, our findings illuminate the epidemic trends, prevalence, recombination, and pathogenicity of current IBV strains in China, providing key information for further strengthening the surveillance and pathogenicity studies of IBV.


Subject(s)
Chickens , Coronavirus Infections , Genetic Variation , Genotype , Infectious bronchitis virus , Phylogeny , Poultry Diseases , Animals , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/classification , Infectious bronchitis virus/isolation & purification , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Prevalence , Virulence , Recombination, Genetic , Serogroup
2.
Viruses ; 14(5)2022 04 22.
Article in English | MEDLINE | ID: mdl-35632616

ABSTRACT

The present study generated nectin1-mutant mice with single amino acid substitution and tested the anti-pseudorabies virus (PRV) ability of the mutant mice, with the aim to establish a model for PRV-resistant livestock. A phenylalanine to alanine transition at position 129 (F129A) of nectin1 was introduced into the mouse genome to generate nectin1 (F129A) mutant mice. The mutant mice were infected with a field-isolated highly virulent PRV strain by subcutaneous injection of virus. We found that the homozygous mutant mice had significantly alleviated disease manifestations and decreased death rate and viral loading in serum and tissue compared with heterozygous mutant and wild-type mice. In addition to disease resistance, the homozygous mutant mice showed a defect in eye development, indicating the side effect on animals by only one amino acid substitution in nectin1. Results demonstrate that gene modification in nectin1 is an effective approach to confer PRV resistance on animals, but the mutagenesis pattern requires further investigation to increase viral resistance without negative effect on animal development.


Subject(s)
Herpesvirus 1, Suid , Animals , Herpesvirus 1, Suid/genetics , Mice
3.
Biotechnol J ; 17(7): e2100408, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34705337

ABSTRACT

BACKGROUND: As an important farm animal, pig functional genomic study can help understand the molecular mechanism related to the key economic traits of pig, such as growth, reproduction, or disease. The genome-scale library based on clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) system facilitates discovery of key genes involved in a specific function or phenotype, allowing for an effective "phenotype-to-genotype" strategy for functional genomic study. METHODS AND RESULTS: We designed and constructed a pig genome-scale CRISPR/Cas9 knockout library targeting 16,888 genes with 970,001 unique sgRNAs. The library is a single-vector system including both Cas9 and sgRNA, and packaged into lentivirus for an easy cell delivery for screening. To establish a screening method in pig cells, we used diphtheria toxin (DT)-induced cell death as a model to screen the host genes critical for DT toxicity in pig PK-15 cells. After lentiviral transduction and two sequential screening with DT treatment, the highest-ranking candidates we identified were previously validated genes, HBEGF, DPH1, DPH2, DPH3, DPH5, DNAJC24, and ZBTB17, which are DT receptor and the key factors involved in biosynthesis of diphthamide, the target of DT action. The function and gene essentiality of candidates were further confirmed by gene knockout and DT toxicity assay in PK-15 cells. CONCLUSIONS: Our CRISPR knockout library targeting pig whole genome establishes a promising platform for pig functional genomic analysis.


Subject(s)
CRISPR-Cas Systems , Lentivirus , Animals , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing , Gene Knockout Techniques , Gene Library , Lentivirus/genetics , RNA, Guide, Kinetoplastida/genetics , Swine
4.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3071-3087, 2021 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-34622618

ABSTRACT

In recent years, the genome editing technologies based on the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) have developed rapidly. The system can use homologous directed recombination (HDR) to achieve precise editing that it medicated, but the efficiency is extremely low, which limits its application in agriculture and biomedical fields. As an emerging genome editing technology, the CRISPR/Cas-mediated DNA base editing technologies can achieve targeted mutations of bases without generating double-strand breaks, and has higher editing efficiency and specificity compared with CRISPR/Cas-mediated HDR editing. At present, cytidine base editors (CBEs) that can mutate C to T, adenine base editors (ABEs) that can mutate A to G, and prime editors (PEs) that enable arbitrary base conversion and precise insertion and deletion of small fragments, have been developed. In addition, glycosylase base editors (GBEs) capable of transitioning from C to G and double base editors capable of editing both A and C simultaneously, have been developed. This review summarizes the development, advances, advantages and limitations of several DNA base editors. The successful applications of DNA base editing technology in biomedicine and agriculture, together with the prospects for further optimization and selection of DNA base editors, are discussed.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Agriculture , CRISPR-Cas Systems/genetics , DNA/genetics , Technology
5.
Respir Res ; 10: 13, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19250527

ABSTRACT

BACKGROUND: Decreased infiltration of Foxp3+ T regulatory cell (Treg) is considered to be critical for the Th1/Th2 dysregulation of nasal polyps, while the cellular mechanism underlying Foxp3+ Treg insufficiency is currently not well defined. METHODS: We attempted to investigate the tissue expression of phosphorylated mammalian target of rapamycin (pmTOR) and infiltration of Foxp3+ Tregs in 28 nasal polyps and 16 controls by histological staining. We also evaluated the effects of blocking the mTOR signaling pathway with rapamycin on T cell phenotype selection and Foxp3+CD4+ Tregs expansion in a tissue culture system. RESULTS: Significantly increased infiltration of pmTOR+ inflammatory cells and decreased infiltration of Foxp3+CD4+ Tregs into nasal polyps was observed, with an inverse association. In the tissue culture system, we detected significantly elevated Foxp3 expression and IL-10 production, as well as an increased percentage of Foxp3+ Tregs in nasal polyps after blocking the mTOR signaling pathway with rapamycin. CONCLUSION: Here we demonstrate for the first time that the mTOR signaling pathway is associated with Foxp3+ Tregs insufficiency in nasal polyps. Inhibition of the mTOR signaling pathway may be helpful for enhancement of Foxp3+ Treg expansion, as well as modulation of T cell phenotype imbalances in nasal polyps.


Subject(s)
Forkhead Transcription Factors/metabolism , Nasal Polyps/metabolism , Protein Kinases/metabolism , Rhinitis/metabolism , Signal Transduction , Sinusitis/metabolism , T-Lymphocytes, Regulatory/metabolism , Adult , Case-Control Studies , Female , Fluorescent Antibody Technique , Forkhead Transcription Factors/genetics , GATA3 Transcription Factor/metabolism , Humans , Immunohistochemistry , Immunosuppressive Agents/pharmacology , Interleukin-10/metabolism , Male , Middle Aged , Nasal Polyps/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3 , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Retinoic Acid/metabolism , Receptors, Thyroid Hormone/metabolism , Rhinitis/immunology , Signal Transduction/drug effects , Sinusitis/immunology , Sirolimus/pharmacology , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , TOR Serine-Threonine Kinases , Tissue Culture Techniques , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...