Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 4(9): 3425-3433, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-33435076

ABSTRACT

To improve the effectiveness of cancer treatment, this study aimed to develop biodegradable microspheres and to combine chemotherapy and radiotherapy via transcatheter arterial embolization/chemoembolization (TAE/TACE) with local radiation therapy for the slow release of chemotherapeutic agents. Microparticles were prepared by double emulsification using a biodegradable and biocompatible polymer Poly(D,l-lactide-co-glycolide) (PLGA). Since the microspheres contain a water-soluble Poly(vinylsulfonic acid) (PVSA) solution, the functional groups of this polymer dissociate into -SO3- in water. The positively charged doxorubicin can be loaded into beads, ensuring slow release. After 188Retin colloids were added into the microspheres, TACE was performed in a rat hepatocellular carcinoma model. Single photon emission computed tomography/computed tomography imaging and biodistribution analyses showed that the microspheres were still in the liver after 72 h. During 4 weeks of observation, ultrasound images showed that the Re/DOX@MS treatment had the most significant inhibitory effect on tumor growth. Biodegradable PLGA microspheres have the advantage of enabling local embolization therapy with reduced adverse effects. In the future, microspheres could serve as a drug delivery system for cancer treatment by combining therapeutic radionuclides and chemotherapeutic drugs, thereby improving treatment effects for hepatocellular carcinoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...