Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 38(5): 660-671, 2017 May.
Article in English | MEDLINE | ID: mdl-28112179

ABSTRACT

Dicer1 is an enzyme essential for microRNA (miRNA) maturation. The loss of miRNAs resulted from Dicer1 deficiency greatly contributes to the progression of many diseases, including lipid dysregulation, but its role in hepatic accumulation of free cholesterol (FC) that is critical in the development of non-alcoholic steatohepatitis (NASH) remains elusive. In this study, we used the liver-specific Dicer1-knockout mice to identify the miRNAs involved in hepatic FC accumulation. In a widely used dietary NASH model, mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks, which resulted in significant increase in hepatic FC levels as well as decrease of Dicer1 mRNA levels in livers. The liver-specific Dicer1-knockout induced hepatic FC accumulation at 5-6 weeks, accompanied by increased mRNA and protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme of cholesterol synthesis in livers. Eleven predicted miRNAs were screened, revealing that miR-29a/b/c significantly suppressed HMGCR expression by targeting the HMGCR mRNA 3'-UTR. Overexpression of miR-29a in SMMC-7721 cells, a steatosis hepatic cell model, significantly decreased HMGCR expression and the FC level. Furthermore, the expression levels of miR-29a were inversely correlated with HMGCR expression levels in the MCD diet mouse model in vivo and in 2 steatosis hepatic cell models (SMMC-7721 and HL-7702 cells) in vitro. Our results show that Dicer1/miR-29/HMGCR axis contributes to hepatic free cholesterol accumulation in mouse NASH, and miR-29 may serve as an important regulator of hepatic cholesterol homeostasis. Thus, miR-29a could be utilized as a potential therapeutic target for the treatment of non-alcoholic fatty liver disease as well as for other liver diseases associated with FC accumulation.


Subject(s)
Cholesterol/metabolism , DEAD-box RNA Helicases/deficiency , Hydroxymethylglutaryl CoA Reductases/metabolism , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Ribonuclease III/deficiency , Animals , DEAD-box RNA Helicases/metabolism , Diet/adverse effects , Gene Knockout Techniques , Male , Methionine/deficiency , Mice , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Messenger/metabolism , Ribonuclease III/metabolism
2.
Acta Pharmacol Sin ; 38(1): 110-119, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27641735

ABSTRACT

Previous studies have shown that microRNA-1304 (miR-1304) is dysregulated in certain types of cancers, including non-small cell lung cancer (NSCLC), and might be involved in tumor survival and/or growth. In this study we investigated the direct target of miR-1304 and its function in NSCLC in vitro. Human lung adenocarcinoma cell lines (A549 and NCI-H1975) were studied. The cell proliferation and survival were investigated via cell counting, MTT and colony-formation assays. Cell apoptosis and cell cycle were examined using annexin V-PE/7-AAD and PI staining assays, respectively. The dual-luciferase reporter assay was used to verify post-transcriptional regulation of heme oxygenase-1 (HO-1) by miR-1304. CRISPR/Cas9 was used to deplete endogenous miR-1304. Overexpression of MiR-1304 significantly decreased the number and viability of NSCLC cells and colony formation, and induced cell apoptosis and G0/G1 phase cell cycle arrest. HO-1 was demonstrated to be a direct target of miR-1304 in NSCLC cells. Restoration of HO-1 expression by hemin (20 µmol/L) abolished the inhibition of miR-1304 on cell growth and rescued miR-1304-induced apoptosis in A549 cells. Suppression of endogenous miR-1304 with anti-1304 significantly increased HO-1 expression and promoted cell growth and survival in A549 cells. In 17 human NSCLC tissue samples, miR-1304 expression was significantly decreased, while HO-1 expression was significantly increased as compared to normal lung tissues. MicroRNA-1304 is a tumor suppressor and HO-1 is its direct target in NSCLC. The results suggest the potential for miR-1304 as a therapeutic target for NSCLC.


Subject(s)
Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heme Oxygenase-1/antagonists & inhibitors , MicroRNAs/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Down-Regulation , Heme Oxygenase-1/metabolism , Hemin/pharmacology , Humans , MicroRNAs/antagonists & inhibitors , RNA, Small Interfering/pharmacology , Tumor Stem Cell Assay , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...