Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 231(Pt 2): 116219, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224950

ABSTRACT

The coexistence of reduced sulfur (-2) compounds (S2-, FeS and SCN-) are found in some industrial wastewaters due to pre-treatment of Fe(II) salts. These compounds as electron donors have attracted increasing interest in autotrophic denitrification process. However, the difference of their functions still remain unknown, which limit efficient utilization in autotrophic denitrification process. The study aimed to investigate and compare utilization behavior of these reduced sulfur (-2) compounds in autotrophic denitrification process activated by thiosulfate-driven autotrophic denitrifiers (TAD). Results showed that the best denitrification performance was observed in SCN-; while the reduction of nitrate was significantly inhibited in S2- system and the efficient accumulation of nitrite was observed in FeS system with cycle experiments continuing. Additionally, intermediates containing sulfur were produced rarely in SCN- system. However, the utilization of SCN- was limited obviously in comparison with S2- in coexistence systems. Moreover, the presence of S2- increased the accumulation peak of nitrite in coexistence systems. The biological results indicated that the TAD utilized rapidly these sulfur (-2) compounds, in which genus of Thiobacillus, Magnetospirillum and Azoarcus might play main roles. Moreover, Cupriavidus might also participate in sulfur oxidation in SCN- system. In conclusion, these might be attributed to the characteristics of sulfur (-2) compounds including the toxicity, solubility and reaction process. These findings provide theoretical basis for regulation and utilization of these reduced sulfur (-2) compounds in autotrophic denitrification process.


Subject(s)
Nitrites , Racepinephrine , Thiosulfates , Denitrification , Bioreactors , Sulfur
2.
Bioresour Technol ; 380: 129069, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086926

ABSTRACT

The efficient utilization of thiocyanate remain be an important bottleneck in the low-cost nitrogen removal for wastewaters containing thiocyanate. The study aimed to investigate the feasibility of thiocyanate in removal of nitrate and ammonium through anammox (AN) and thiosulfate-driven autotrophic denitrifiers (TSAD). The results showed that removal of nitrate and ammonium were achieved rapidly utilizing thiocyanate, which was attributed to degradation of thiocyanate by TSAD and cooperation with AN. The utilization efficiency of thiocyanate in nitrogen removal was increased by 250% due to the microbial cooperation. Excess thiocyanate and ammonium did not influence the nitrogen removal amount. However, the nitrogen removal were affected obviously by the biomass ratio (XAN/XTSAD) between AN and TSAD Moreover, the dynamics related to removal of pollutants was described successfully by a modified Monod model with time constraints. These findings offer an insight for efficient utilization of thiocyanate in nitrogen removal via microbial cooperation.


Subject(s)
Ammonium Compounds , Nitrates , Thiosulfates , Thiocyanates , Anaerobic Ammonia Oxidation , Denitrification , Bioreactors , Oxidation-Reduction , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...