Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794012

ABSTRACT

Deep hole measurement is a crucial step in both deep hole machining and deep hole maintenance. Single-camera vision presents promising prospects in deep hole measurement due to its simple structure and low-cost advantages. However, the measurement error caused by the heating of the imaging sensor makes it difficult to achieve the ideal measurement accuracy. To compensate for measurement errors induced by imaging sensor heating, this study proposes an error compensation method for laser and vision-based deep hole measurement instruments. This method predicts the pixel displacement of the entire field of view using the pixel displacement of fixed targets within the camera's field of view and compensates for measurement errors through a perspective transformation. Theoretical analysis indicates that the perspective projection matrix changes due to the heating of the imaging sensor, which causes the thermally induced measurement error of the camera. By analyzing the displacement of the fixed target point, it is possible to monitor changes in the perspective projection matrix and thus compensate for camera measurement errors. In compensation experiments, using target displacement effectively predicts pixel drift in the pixel coordinate system. After compensation, the pixel error was suppressed from 1.99 pixels to 0.393 pixels. Repetitive measurement tests of the deep hole measurement instrument validate the practicality and reliability of compensating for thermal-induced errors using perspective transformation.

2.
Sensors (Basel) ; 23(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36772131

ABSTRACT

Here, we report an ultracompact angular displacement sensor based on the Talbot effect of optical microgratings. Periodic Talbot interference patterns were obtained behind an upper optical grating. By putting another grating within the Talbot region, the total transmission of the two-grating structure was found to be approximatively in a linear relationship with the relative pitch angle between the two gratings, which was explained by a transversal shift of the Talbot interference patterns. The influence of the grating parameters (e.g., the grating period, the number of grating lines and the gap between the two gratings) was also studied in both a simulation and an experiment, showing a tunable sensitivity and range by simply changing the grating parameters. A sensitivity of 0.19 mV/arcsec was experimentally obtained, leading to a relative sensitivity of 0.27%/arcsec within a linear range of ±396 arcsec with the 2 µm-period optical gratings. Benefitting from tunable properties and an ultracompact structure, we believe that the proposed sensor shows great potential in applications such as aviation, navigation, robotics and manufacturing engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...