Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(21): 6433-6445, 2022 11.
Article in English | MEDLINE | ID: mdl-35894152

ABSTRACT

Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life-style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long-term soil C sequestration, which has important implications for the microbial-mediated C process in the face of global climate change.


Subject(s)
Carbon , Soil , Carbon/metabolism , Carbon Dioxide , Soil/chemistry , Soil Microbiology , Temperature
2.
Molecules ; 23(1)2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29320442

ABSTRACT

GP-1 is a novel glycoprotein produced by Streptomyces kanasenisi ZX01 that was isolated from soil near Kanas Lake with significant bioactivity against tobacco mosaic virus. However, extremely low fermentation production has largely hindered further research and market applications on glycoprotein GP-1. In this study, response surface methodology was used to optimize fermentation conditions in a shake flask for higher glycoprotein GP-1 production. When the optimized fermentation conditions were inoculum volume of 6%, initial pH of 6.5, and rotating speed of 150 rpm, glycoprotein GP-1 production could reach 0.9253 mg/L, which was increased by 52.14% compared to the original conditions. In addition, scale-up fermentation was conducted in a 5-L bioreactor to preliminarily explore the feasibility for mass production of glycoprotein GP-1 in a large fermentor, obtaining GP-1 production of 2.54 mg/L under the same conditions, which was 2.75 times higher than the production obtained from a shake flask of 0.9253 mg/L. This work will be helpful to improve GP-1 production on a large scale and lay the foundations for developing it as a novel agent against plant virus.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Fermentation , Glycoproteins/biosynthesis , Glycoproteins/pharmacology , Streptomyces/metabolism , Biomass , Bioreactors , Tobacco Mosaic Virus/drug effects
3.
Molecules ; 23(1)2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29324690

ABSTRACT

The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 °C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (kLa) were also studied. The values of volumetric oxygen transfer coefficient in the logarithmic phase increased with increase of agitation speed (from 14.53 to 32.82 h-1) and aeration rate (from 13.21 to 22.43 h-1). In addition, a successful scale-up from bench-scale to pilot-scale was performed based on volumetric oxygen transfer coefficient, resulting in final GP-1 production of 3.92, 4.03, 3.82 and 4.20 mg/L in 5 L, 15 L, 70 L and 500 L fermentors, respectively. These results indicated that constant volumetric oxygen transfer coefficient was appropriate for the scale-up of batch fermentation of glycoprotein GP-1 by Streptomyces kanasenisi ZX01, and this scale-up strategy successfully achieved 100-fold scale-up from bench-scale to pilot-scale fermentor.


Subject(s)
Bioreactors , Fermentation , Glycoproteins/biosynthesis , Oxygen/metabolism , Streptomyces/metabolism , Temperature , Batch Cell Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...