Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 309(Pt 1): 136728, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36209870

ABSTRACT

The effects of salinity on highly enriched polyphosphate- or glycogen-accumulating organisms (PAOs or GAOs) have been revealed, which is meaningful but idealized. In this study, three salinity levels (0.5%, 1.0%, and 0.75%) were sequentially adopted in a PAOs and GAOs coexisted biological phosphorus removal (BPR) reactor within 150 days. Compared to a slight decrease of phosphorus removal efficiency (PRE) under 0.5% salinity (from 96.09% to 73.68%), doubled salinity (1.0%) resulted in a lengthy recovery period and a sharp PRE decline (13.89%), and the PRE was merely kept at 27.39% even through salinity was decreased to 0.75% hereafter. Salinity was also found to stimulate more extracellular protein secretion, resulting in sludge volume index reduction (<32.87 mL/g) and particle size enlargement (222.78 µm on average). Hyphomicrobium (0.96%-1.76%) and unclassified_f_Rhodobacteraceae (4.72%-13.33%) could resist certain salinity and conduct BPR, but better salt-tolerant Candidatus_Competibacter eventually became the predominant genus (>40%).


Subject(s)
Microbiota , Phosphorus , Phosphorus/metabolism , Sewage , Bioreactors , Salinity , Polyphosphates/metabolism , Glycogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...