Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916453

ABSTRACT

The chemical and physical properties of nanomaterials ultimately rely on their crystal structures, chemical compositions and distributions. In this paper, a series of AuCu bimetallic nanoparticles with well-defined architectures and variable compositions has been addressed to explore their thermal stability and thermally driven behavior by molecular dynamics simulations. By combination of energy and Lindemann criteria, the solid-liquid transition and its critical temperature were accurately identified. Meanwhile, atomic diffusion, bond order, and particle morphology were examined to shed light on thermodynamic evolution of the particles. Our results reveal that composition-dependent melting point of AuCu nanoparticles significantly departs from the Vegard's law prediction. Especially, chemically disordered (ordered) alloy nanoparticles exhibited markedly low (high) melting points in comparison with their unary counterparts, which should be attributed to enhancing (decreasing) atomic diffusivity in alloys. Furthermore, core-shell structures and heterostructures demonstrated a mode transition between the ordinary melting and the two-stage melting with varying Au content. AuCu alloyed nanoparticles presented the evolution tendency of chemical ordering from disorder to order before melting and then to disorder during melting. Additionally, as the temperature increases, the shape transformation was observed in AuCu nanoparticles with heterostructure or L10 structure owing to the difference in thermal expansion coefficients of elements and/or of crystalline orientations. Our findings advance the fundamental understanding on thermodynamic behavior and stability of metallic nanoparticles, offering theoretical insights for design and application of nanosized particles with tunable properties.

2.
J Chem Inf Model ; 63(21): 6727-6739, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37853630

ABSTRACT

Determining the optimal structures and clarifying the corresponding hierarchical evolution of transition metal clusters are of fundamental importance for their applications. The global optimization of clusters containing a large number of atoms, however, is a vastly challenging task encountered in many fields of physics and chemistry. In this work, a high-efficiency self-adaptive differential evolution with neighborhood search (SaNSDE) algorithm, which introduced an optimized cross-operation and an improved Basin Hopping module, was employed to search the lowest-energy structures of CoN, PtN, and FeN (N = 3-200) clusters. The performance of the SaNSDE algorithm was first evaluated by comparing our results with the parallel results collected in the Cambridge Cluster Database (CCD). Subsequently, different analytical methods were introduced to investigate the structural and energetic properties of these clusters systematically, and special attention was paid to elucidating the structural evolution with cluster size by exploring their overall shape, atomic arrangement, structural similarity, and growth pattern. By comparison with those results listed in the CCD, 13 lower-energy structures of FeN clusters were discovered. Moreover, our results reveal that the clusters of three metals had different magic numbers with superior stable structures, most of which possessed high symmetry. The structural evolution of Co, Pt, and Fe clusters could be, respectively, considered as predominantly closed-shell icosahedral, Marks decahedral, and disordered icosahedral-ring growth. Further, the formation of shell structures was discovered, and the clusters with hcp-, fcc-, and bcc-like configurations were ascertained. Nevertheless, the growth of the clusters was not simply atom-to-atom piling up on a given cluster despite gradual saturation of the coordination number toward its bulk limit. Our work identifies the general growth trends for such a wide region of cluster sizes, which would be unbearably expensive in first-principles calculations, and advances the development of global optimization algorithms for the structural prediction of clusters.


Subject(s)
Algorithms , Physics , Cell Proliferation , Databases, Factual
3.
Phys Chem Chem Phys ; 25(10): 7436-7444, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847782

ABSTRACT

As an emerging two-dimensional (2D) material, the TiB4 monolayer possesses intrinsic advantages in electrochemical applications owing to its graphene-like structure and metallic characteristics. In this work, we performed density functional calculations to investigate the electrochemical properties of the TiB4 monolayer as an anode material for Li/Na/K ion batteries and as an electrocatalyst for the nitrogen reduction reaction (NRR). Our investigation reveals that Li/Na/K ions could be steadily adsorbed on the TiB4 monolayer with moderate adsorption energies, and tended to diffuse along two adjacent C-sites with lower energy barriers (0.231/0.094/0.067 eV for Li/Na/K ions) compared to the currently reported transition-metal boride monolayers. Furthermore, a N2 molecule can be spontaneously captured by the TiB4 monolayer with a negative Gibbs free energy (-0.925 eV and -0.326 eV for end-on and side-on adsorptions, respectively), hence provoking a conversion into NH3 along the most efficient reaction pathway (i.e., N2* → N2H* → HNNH* → H2NNH* → H3NNH* → NH* → NH2* → NH3*). In the hydrogenation process, the TiB4 monolayer exhibits much higher catalytic activity for the NRR as compared with other electrocatalysts, which should be attributed to the spontaneous achievement (ΔG < 0) at all hydrogenation reaction steps except the potential-determining step. Moreover, the TiB4 monolayer exhibits higher selectivity toward the NRR than the hydrogen evolution reaction. Our work advances the mechanistic understanding on the electrochemical properties of the TiB4 monolayer as an anode material for metal-ion batteries and as a NRR electrocatalyst, and provides significant guidance for developing high-performance multifunctional 2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...