Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(12): 8507-8517, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35674357

ABSTRACT

Gestational exposure to environmental chemicals and subsequent permeation through the placental barrier represents potential health risks to both pregnant women and their fetuses. In the present study, we explored prenatal exposure to a suite of 46 emerging plasticizers and synthetic antioxidants (including five transformation products of 2,6-di-tert-butyl-4-hydroxytoluene, BHT) and their potency to cross human placenta based on a total of 109 maternal and cord serum pairs. Most of these chemicals have rarely or never been investigated for prenatal exposure and associated health risks. Eleven of them exhibited detection frequency greater than 50% in maternal blood, including dibutyl fumarate (DBF), 2,6-di-tert-butylphenol (2,4-DtBP), 1,3-diphenylguanidine (DPG), methyl-2-(benzoyl)benzoate (MBB), triethyl citrate (TEC), BHT, and its five metabolites, with a median concentration from 0.05 to 3.1 ng/mL. The transplacental transfer efficiency (TTE) was determined for selected chemicals with valid measurements in more than 10 maternal/cord blood pairs, and the mean TTEs exhibited a large variation (i.e., 0.29-2.14) between chemicals. The determined TTEs for some of the target chemicals were comparable to the predicted values by our previously proposed models developed from molecular descriptors, indicating that their transplacental transfer potency could be largely affected by physicochemical properties and molecular structures. However, additional biological and physiological factors may influence the potency of environmental chemicals to cross human placenta. Overall, our study findings raise concern on human exposure to an increasing list of plastic additives during critical life stages (e.g., pregnancy) and potential health risks.


Subject(s)
Butylated Hydroxytoluene , Prenatal Exposure Delayed Effects , Antioxidants , Butylated Hydroxytoluene/analysis , Female , Humans , Placenta/chemistry , Plasticizers , Pregnancy
2.
J Colloid Interface Sci ; 463: 233-41, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26550781

ABSTRACT

TiO2 and Ce/TiO2 were synthesized and subsequently used for the catalytic combustion of DCM. TiO2 had abundant Lewis acid sites and was responsible for the adsorption and the rupture of C-Cl bonds. However, TiO2 tended to be inactivated because of chloride poisoning due to the adsorption and accumulation of Cl species over the surface. While, Ce/TiO2 obtained total oxidation of CH2Cl2 at 335°C and exhibited stable DCM removal activity on 100h long-time stability tests at 330°C without any catalyst deactivation. The doped cerium generated Ce(3+) chemical states and surface active oxygen, and therefore played important roles from two aspects as follows. First of all, the poisoning of Cl for Ce/TiO2 was inhibited to some extent by CeO2 due to the rapid removal of Cl on the surface of CeO2, which has been verified by NH3-IR characterization. In the other hand, CeO2 enhanced the further deep oxidation of C-H from byproducts and retained the certain oxidation of CO to CO2. Based on the DRIFT characterization and the catalysts activity tests, a two-step reaction pathway for the catalytic combustion of DCM on Ce/TiO2 catalyst was proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...