Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20324, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37990123

ABSTRACT

The enhanced therapeutic effects and mechanisms of certain herbal combination in various herbal prescriptions are mostly unclear. A combination of two herbs, namely Ephedrae herba (EH) and Coicis semen (CS), has been commonly prescribed for obesity. In our previous work, the combination of EH and CS was studied using network pharmacological approach to predict its pharmacological targets and in vitro experiments to evaluate its efficacy on obesity. Although we demonstrated enhanced anti-adiposity effects of the combination on matured adipocytes, the molecular mechanisms and contributing compounds underlying the effects of EH-CS combination on adiposity or adipogenesis were not fully elucidated. The current study adopted integrated bioinformatics analysis to precisely validate potential targets of EH-CS by screening differentially expressed genes (DEGs) of morbid obesity patients from NCBI gene expression omnibus (GEO). Based on the functional cluster analysis of down-regulated DEGs, the anti-adipogenesis mechanism of EH-CS combination was speculated with KEGG enrichment analysis. Furthermore, we investigated the combinational effects of EH and coixol, or stigmasterol, the two compounds in CS which were expected to have main beneficial effects in metabolic diseases. Moreover, distinct effect of the combination on transcriptional activity of glucocorticoid receptor (GR) was investigated using electrophoretic mobility shift assay (EMSA). The EH-CS combination was predicted to modulate down-regulated genes which are involved in KEGG pathways crucial to metabolic disease in morbidly obese individuals. The combination of EH with CS compounds significantly increased the phosphorylation of acetyl-coA carboxylase (ACC), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) in 3T3-L1 cells and decreased intracellular lipid accumulation. The two CS compounds significantly increased the anti-adipogenesis/lipogenesis effects of EH by inhibiting the gene expression levels. Finally, the combination of EH and coixol inhibited dexamethasone-induced GR translocation to the nucleus and transcriptional binding activity in adipocytes. The combination of EH and CS could be considered a therapeutic strategy for treating metabolic diseases, including obesity.


Subject(s)
Anti-Obesity Agents , Coix , Metabolic Diseases , Obesity, Morbid , Humans , Mice , Animals , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Adiposity , Adipogenesis/genetics , AMP-Activated Protein Kinases/metabolism , 3T3-L1 Cells , Anti-Obesity Agents/pharmacology
2.
PLoS One ; 18(3): e0282875, 2023.
Article in English | MEDLINE | ID: mdl-36928463

ABSTRACT

BACKGROUND: Herbal combinations are regarded as basic strategy in oriental medicine with various purposes. Ephedrae herba (EH) and Coicis semen (CS) are two herbal medicines used to treat obesity in many herbal prescriptions, yet the effect and significance of this herbal pair have not been evaluated. PURPOSE: This study is to elucidate the effect of a novel herbal pair, EH-CS, on obesity and identify the key synergistic mechanism underlying it. METHODS: We investigated the network of herbs comprising the anti-obesity herbal prescriptions. Using the tools of network pharmacology, we investigated the compound-target interactions of EH and CS in combination to predict their effects in combination. Five EH-CS samples with different EH to CS ratios were prepared to investigate their efficacies in adipocytes. RESULTS: 1-mode network analysis of herbs in prescriptions based on literature review revealed the importance of EH-CS in anti-obesity prescriptions. The herbal combination comprised of equivalent weights (1:1) of EH and CS most potently reduced mature adipocyte adiposity, although several markers of adipogenesis and lipid synthesis were more suppressed by pure EH. PTGS2 (COX-2 gene) expression, a common target of EH and CS as deduced by compound-target network analysis, was affected by EH-CS extract treatments. However, EH at high concentration (25 µg/ml) notably increased PTGS2 expression without adversely affecting cell viability. However, EH-CS combination of the same concentration markedly decreased PTGS2 gene expression. CONCLUSION: These results show that the compounds in CS and EH act in concert to enhance the pharmacological effect of EH, but control unexpected effects of EH treatment.


Subject(s)
Adipogenesis , Coix , Drugs, Chinese Herbal , Network Pharmacology , Animals , Mice , 3T3-L1 Cells , Adipogenesis/drug effects , Cyclooxygenase 2/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Obesity/drug therapy , Obesity/metabolism
3.
Curr Issues Mol Biol ; 45(2): 1314-1332, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36826031

ABSTRACT

The network pharmacology (NP) approach is a valuable novel methodology for understanding the complex pharmacological mechanisms of medicinal herbs. In addition, various in silico analysis techniques combined with the NP can improve the understanding of various issues used in natural product research. This study assessed the therapeutic effects of Arum ternata (AT), Poria cocos (PC), and Zingiber officinale (ZO) on hyperlipidemia after network pharmacologic analysis. A protein-protein interaction (PPI) network of forty-one key targets was analyzed to discover core functional clusters of the herbal compounds. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) term enrichment analysis identified significant categories of hypolipidemic mechanisms. The STITCH database indicated a high connection with several statin drugs, deduced by the similarity in targets. AT, PC, and ZO regulated the genes related to the energy metabolism and lipogenesis in HepG2 cells loaded with free fatty acids (FFAs). Furthermore, the mixture of three herbs had a combinational effect. The herbal combination exerted superior efficacy compared to a single herb, particularly in regulating acetyl-CoA carboxylase (ACC) and carnitine palmitoyltransferase 1 (CPT-1). In conclusion, the network pharmacologic approach was used to assess potential targets of the herbal combination for treatment. Experimental data from FFA-induced HepG2 cells suggested that the combination of AT, PC, and ZO might attenuate hyperlipidemia and its associated hepatic steatosis.

4.
FASEB J ; 36(7): e22387, 2022 07.
Article in English | MEDLINE | ID: mdl-35696068

ABSTRACT

Targeting Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2) signaling is regarded as a potential strategy for treating inflammatory diseases. Saponaria officinalis L. is rich in saponin, which include quillaic acid, gypsogenin, saponarin, and hederagenin. We evaluated the pharmacological activity of a Saponaria officinalis extract in THP-1 derived macrophages and RAW264.7 macrophages. TLR4/MyD88 complex formation and downstream signals were investigated by co-immunoprecipitation (Co-IP). In silico docking simulation was conducted to predict binding scores and perform 3D modeling of saponarin-TLR4/MD2 complex. A hexane fraction of Saponaria officinalis (SH) and fr.1 (a sub-fraction 1 of SH) inhibited mitogen-activated protein kinase (MAPK) signaling, nuclear factor kappa b (NF-κB) activity, cytokine production, and the expressions of marker genes specific for M1 polarization. The inhibitory effects of fr.1 and saponarin on TLR4/MyD88 complex formation were observed by western blotting TLR4 co-immunoprecipitated proteins. Saponarin and fr.1 markedly attenuated LPS-induced inflammatory cytokines, thus reducing mortality and morphological abnormality in zebrafish larvae. Finally, docking simulation revealed that saponarin can directly interact with TLR4/MD2 complex to inhibit downstream signalings. Our findings suggest that saponarin reduces downstream inflammatory response by disrupting TLR4/MD2 complex and blocking MyD88-dependent inflammatory signaling.


Subject(s)
Saponaria , Toll-Like Receptor 4 , Adaptor Proteins, Signal Transducing/metabolism , Animals , Lipopolysaccharides/pharmacology , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Saponaria/metabolism , Signal Transduction/physiology , Toll-Like Receptor 4/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
5.
Article in English | MEDLINE | ID: mdl-32454852

ABSTRACT

Despite its deleterious effects on living cells, oxidative stress plays essential roles in normal physiological processes and provides signaling molecules for cell growth, differentiation, and inflammation. Macrophages are equipped with antioxidant mechanisms to cope with intracellular ROS produced during immune response, and Nrf2 (NF-E2-related factor 2)/HO-1 (heme oxygenase-1) pathway is an attractive target due to its protective effect against ROS-induced cell damage in inflamed macrophages. We investigated the effects of ethanol extract of A. villosum (AVEE) on lipopolysaccharide- (LPS-) stimulated inflammatory responses generated via the Nrf2/HO-1 signaling pathway in murine peritoneal macrophages and RAW 264.7 cells. AVEE was found to suppress the NF-κB signaling pathway, thus, to reduce proinflammatory cytokine, nitric oxide, and prostaglandin levels in peritoneal macrophages and Raw 264.7 cells treated with LPS, and to enhance HO-1 expression by activating Nrf2 signaling. Furthermore, these anti-inflammatory effects of AVEE were diminished when cells were pretreated with SnPP (a HO-1 inhibitor). HPLC analysis revealed AVEE contained quercetin, a possible activator of the Nrf2/HO-1 pathway. These results show A. villosum ethanol extract exerts anti-inflammatory effects by activating the Nrf2/HO-1 pathway in LPS-stimulated macrophages.

6.
Article in English | MEDLINE | ID: mdl-33456493

ABSTRACT

Relatively high proportions of proinflammatory M1-like macrophages in tissues may lead to vascular impairment and trigger numerous diseases including atherosclerosis-related cardiovascular disease (CVD). Jisil Haebaek Gyeji-tang (JHGT), a polyherbal decoction, is traditionally used to treat various human ailments including chest pain, angina, and myocardial infarction. In the present study, we investigated the anti-inflammatory effects of JHGT on lipopolysaccharide- (LPS-) stimulated M1 macrophage polarization generated via the mitogen-activated protein kinases (MAPKs) pathway in RAW 264.7 mouse macrophages. The reducing power of JHGT was also investigated using DAF-FA DA in a zebrafish model. JHGT significantly reduced inflammatory mediator levels, including iNOS, COX2, TNF-α, IL-6, and IL-1ß, as compared with LPS-stimulated controls in vitro and ex vivo. Furthermore, JHGT suppressed the ERK1/2, JNK, and p38 MAPK pathways and reduced p-IκBα levels and the nuclear translocation of NF-κB in RAW 264.7 cells. In addition, treatment with JHGT significantly reduced the NO levels in LPS-treated zebrafish larva ex vivo. Our findings show the potent anti-inflammatory properties of JHGT are due to its suppression of MAPK signaling, NF-κB translocation, and M1 macrophage polarization.

7.
Article in English | MEDLINE | ID: mdl-30881473

ABSTRACT

Over the last decade, the link between nonalcoholic fatty liver disease (NAFLD) and insulin resistance has attracted considerable attention. Caused by chronic hyperglycemic stress, insulin resistance (IR) impairs insulin signal transduction and leads to the development of NAFLD. Jwa Kum Whan (JKW), a herbal formula in Traditional Korean Medicine, consists of two medicinal herbs that possess notable effects against hyperglycemia and IR. In this study, we sought to determine the pharmacological effects of JKW, and the mechanisms responsible, on hepatic steatosis in free fatty acids (FFAs)-stimulated HepG2 cells and in high-fat diet (HFD)-fed obese mice. Treatment with JKW significantly decreased intracellular lipid accumulation in vitro. Furthermore, JKW significantly triggered the phosphorylation of insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) and modulated glucose and lipid metabolism via an AMP-activated protein kinase (AMPK) signaling pathway. Analysis of serum parameters in HFD-fed mice showed that JKW improved glucose levels and insulin resistance index (HOMA-IR). In addition, JKW successfully reduced hepatic triglyceride (TG) and cholesterol accumulation. Our results suggest that JKW alleviates NAFLD by modulating the insulin signaling pathway and glucose metabolism. These findings provide a scientific rationale for the potential use of JKW for the treatment and prevention of NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL
...