Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Genet Eng Rev ; : 1-22, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37125903

ABSTRACT

This work sought to determine how lipopolysaccharide (LPS)-induced pro-inflammatory factor production in BV2 microglia was influenced by myeloid cell 2 (TREM2) expressions. LPS (0.1, 1, and 10 µg/mL) induced inflammation in BV2 cells, MTT and QPCR were used to detect the occurrence of inflammation; TREM2 activation and inhibition vectors were used to activate and inhibit TREM2; Cell Proliferation was detected using CCK-8 and cell cloning experiments. LY294002 was used to inhibit the activity of PI3K/AKT signal pathway; Western blot and ELISA were used to detect cell polarization and signal pathway changes. CCK-8 and cell clone experiments found that the activation of TERM2 can promote the proliferation of BV2 cells; and the activation of TERM2 can promote the expression of IL6, IL1ß, TNFα and the expression of M2 cell phenotype molecules Arg-1 and CD206. The effect of adding LY294002 signaling pathway by TERM2 activation was inhibited, indicating that TERM2 can affect the occurrence of inflammation by regulating the activity of PI3K/AKT signaling pathway. Finally, Western blotting and ELISA showed that activation of TERM2 can promote the expression of Arg-1 and CD206 in BV2 cells, and promote the transformation of BV2 cells to M2 polarization. TERM2 can affect the inflammatory response in microglia through the PI3K/AKT signaling pathway, suggesting that TERM2 may be a target for the treatment of inflammatory response in glial cells. This study provides a treatment plan for alleviating the impact of inflammation on central nervous system.

2.
Exp Ther Med ; 19(3): 2282-2290, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32104295

ABSTRACT

Although higher serum level of cystatin C (CysC) was observed in patients with cerebral microbleeds, its associated role in the disease has not been elucidated. In this work, a rat model of cerebral microbleeds was created with the aim of investigating effects of CysC on cognitive function in rats with cerebral microbleeds and the underlying mechanism. Serum samples of patients with cerebral microbleeds and healthy people of the same age were collected. Levels of cystatin C expression in these samples were measured using CysC kits. Moreover, 48 spontaneously hypertensive rats (SHRs) bred under specific pathogen-free (SPF) conditions were randomly divided into 4 groups: sham surgery control group (sham), model group (CMB), model + empty vector control group (CMB + vehicle), and model + cystatin C overexpression group (CMB + CysC). Expression levels of CysC in hippocampus of rats in each group were measured by western blot analysis. The Y-maze was used to evaluate cognitive function of rats. Hippocampal long-term potentiation (LTP) in rats was assessed by the electrophysiological assay. Alterations in levels of p-ERK1/2 and p-synapsin Ia/b proteins associated with cognitive function were identified by western blot analysis. The serum levels of CysC in patients with cerebral microbleeds were significantly upregulated (P<0.001). After injection of CysC, its expression levels in rat hippocampus were significantly increased (P<0.001), which enhanced the decline in learning and memory function, as well as the decrease of LTP in the rat model of cerebral microbleeds (P<0.001). Western blot results showed that injection of CysC further reduced the levels of p-ERK1/2 and p-synapsin Ia/b in the rat model of microbleeds (P<0.001). CysC was up regulated in serum of patients with cerebral microbleeds. It promoted cognitive dysfunction in rats with microbleeds by inhibiting ERK/synapsin Ia/Ib pathway.

3.
J Cell Biochem ; 121(1): 690-697, 2020 01.
Article in English | MEDLINE | ID: mdl-31407396

ABSTRACT

Glioma (GM) is a highly lethal human cancer. Circular RNAs (circRNAs) act as an imperative factor in oncogenesis. We aimed to investigate the biological functions and mechanisms of circ-CDC45 in GM. circ-CDC45 expression in GM specimens and cell lines was measured by real-time quantitative reverse transcription polymerase chain reaction. Fisher's exact test and Kaplan-Meier curves further analyzed its clinical implications. A gain/loss-of-function study was conducted to investigate the role of circ-CDC45 in GM. Additionally, luciferase reporter and rescue assays were performed to unravel the mechanisms of circ-CDC45. High circ-CDC45 expression was found in GM specimens and cells, which was tightly related to a larger tumor size, higher world health organization (WHO) stages, and worse survival for patients with GM. Functionally, manipulation of circ-CDC45 expression strongly affected cell growth, apoptosis, migration and invasion, which suggests the oncogenic function of circ-CDC45 in GM oncogenesis. Stepwise mechanism studies indicated that circ-CDC45 sponged and regulated the expression of miR-516b and miR-527 to promote cell growth and invasion. Briefly, the regulatory network of circ-CDC45/miR-516b/miR-527 plays a pivotal role in GM tumorigenesis and may act as a potential target for GM treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic , Glioma/pathology , MicroRNAs/genetics , RNA, Circular/genetics , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Glioma/genetics , Glioma/metabolism , Humans , Male , Middle Aged , Prognosis , Survival Rate , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...