Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cytogenet ; 8: 85, 2015.
Article in English | MEDLINE | ID: mdl-26539248

ABSTRACT

BACKGROUND: The prenatal diagnosis of subjects with complete uniparental isodisomy of chromosome 4 (iUPD4) has rarely been reported and poses a great challenge for genetic counseling. In this study, a prenatal case with a high (1 in 58) risk of Down syndrome was diagnosed with iUPD4 by combined chromosomal microarray analysis (CMA), whole exome sequencing (WES) and ultrasound morphology scan. RESULTS: By CMA, a pathogenic copy number variant was not detected; however, a complete maternal iUPD4 was identified in this fetus after analyzing the parental genotype results. To detect potentially autosomal recessive variants, WES was performed. Two missense and two frameshift variants were identified but were predicted with uncertain significance; none of the mutations were definitively associated with congenital abnormality or inherited disease. In addition, a detailed ultrasound morphology scan did not identify any structural abnormalities, facial dysmorphisms or intrauterine growth restriction. The family history was unremarkable. The couple was counseled with the prenatal diagnostic results, and they opted to give birth to the child. No phenotypic abnormalities were observed in this child after the first year of life. CONCLUSION: This study provides further evidence that iUPD4 can result in a healthy live birth and demonstrates that the combined use of CMA, WES and ultrasound technology provides additional information for the prenatal diagnosis and clinical management of rare UPD events.

2.
Cytogenet Genome Res ; 146(1): 9-18, 2015.
Article in English | MEDLINE | ID: mdl-26184742

ABSTRACT

Imprinting disorders, such as Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS) and Angelman syndrome (AS), can be detected via methylation analysis, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), or other methods. In this study, we applied single nucleotide polymorphism (SNP)-based chromosomal microarray analysis to detect copy number variations (CNVs) and uniparental disomy (UPD) events in patients with suspected imprinting disorders. Of 4 patients, 2 had a 5.25-Mb microdeletion in the 15q11.2q13.2 region, 1 had a 38.4-Mb mosaic UPD in the 11p15.4 region, and 1 had a 60-Mb detectable UPD between regions 14q13.2 and 14q32.13. Although the 14q32.2 region was classified as normal by SNP array for the 14q13 UPD patient, it turned out to be a heterodisomic UPD by short tandem repeat marker analysis. MS-MLPA analysis was performed to validate the variations. In conclusion, SNP-based microarray is an efficient alternative method for quickly and precisely diagnosing PWS, AS, BWS, and other imprinted gene-associated disorders when considering aberrations due to CNVs and most types of UPD.


Subject(s)
Molecular Diagnostic Techniques , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Uniparental Disomy/diagnosis , Angelman Syndrome/diagnosis , Angelman Syndrome/genetics , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Child , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 15/genetics , DNA Copy Number Variations , Genomic Imprinting , Humans , Infant, Newborn , Male , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/genetics , Sequence Deletion , Uniparental Disomy/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...