Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 56(4): 535-538, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31829332

ABSTRACT

A fluorine plasma-treated carbon electrode is used in HTM-free perovskite solar cells for high efficiency and moisture resistance. The fluorine-treated device with a champion power conversion efficiency (PCE) of 14.86% is achieved with a highly enhanced FF (FF = 0.69), showing superior long-term stability and excellent moisture penetration suppression.

2.
J Am Chem Soc ; 141(14): 5808-5814, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30905150

ABSTRACT

Rendering a high crystalline perovskite film is integral to achieve superior performance of perovskite solar cells (PSCs). Here, we established a two-dimensional liquid cage annealing system, a unique methodology for remarkable enhancement in perovskite crystallinity. During thermal annealing for crystallization, wet-perovskite films were suffocated by perfluorodecalin with distinctively low polarity, nontoxic, and chemically inert characteristics. This annealing strategy facilitated enlargement of perovskite grain and diminution in the number of trap states. The simulation results, annealing time, and temperature experiments supported that the prolonged diffusion length of precursor ions attributed to the increase of perovskite grains. Consequently, without any complicated handling, the performance of perovskite photovoltaics was remarkably improved, and the monolithic grains which directly connected the lower and upper electrode attenuated hysteresis.

3.
Langmuir ; 34(51): 15773-15782, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30507208

ABSTRACT

Inverted conducting polymer/metal oxide core/shell structured pPPy/SiO2-TiO2 nanoparticles were prepared as electrorheological (ER) materials using sequential experimental methods. The core was synthesized via the low-temperature self-assembly of PPy and SiO2 materials, and the outer TiO2 shell was easily coated onto the core part using a sol-gel method and a titanium isopropoxide precursor. Sonication-mediated etching and redeposition were employed to etch out SiO2 portions from the core part to blend with TiO2 shells. Each step in nanoparticle synthesis involved morphological and physical changes to the surface area and porosity, with subsequent changes in the intrinsic properties of the materials. Specifically, the electrical conductivity and dielectric properties were successfully altered. The final pPPy/SiO2-TiO2 nanoparticle configuration was optimized for ER applications, offering low electrical conductivity, high dielectric properties, and increased dispersion stability. pPPy/SiO2-TiO2 nanoparticles exhibited 24.7- and 2.7-fold enhancements in ER performance compared to that of PPy-SiO2 and PPy-SiO2/TiO2 precursor nanoparticles, respectively. The versatile method proposed in this study for the synthesis of inverted conducting polymer/metal oxide core/shell nanoparticles shows great potential for the development of custom-designed ER materials.

4.
ACS Appl Mater Interfaces ; 10(14): 11843-11851, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29522314

ABSTRACT

A simple one-pot method is reported for the fabrication of uniform wrinkled silica nanoparticles (WSNs). Rapid cooling of reactants at the appropriate moment during synthesis allowed the separation of nucleation and growth stages, resulting in uniform particles. The factors affecting particle size and interwrinkle distance were also investigated. WSNs with particle sizes of 65-400 nm, interwrinkle distances of 10-33 nm, and surface areas up to 617 m2 g-1 were fabricated. Furthermore, our results demonstrate the advantages of WSNs over comparable nonporous silica nanospheres and fumed silica-based products as an abrasive material in chemical mechanical planarization processes.

5.
Adv Mater ; 30(10)2018 Mar.
Article in English | MEDLINE | ID: mdl-29349865

ABSTRACT

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has now exceeded 20%; thus, research focus has shifted to establishing the foundations for commercialization. One of the pivotal themes is to curtail the overall fabrication time, to reduce unit cost, and mass-produce PSCs. Additionally, energy dissipation during the thermal annealing (TA) stage must be minimized by realizing a genuine low-temperature (LT) process. Here, tin oxide (SnO2 ) thin films (TFs) are formulated at extremely high speed, within 5 min, under an almost room-temperature environment (<50 °C), using atmospheric Ar/O2 plasma energy (P-SnO2 ) and are applied as an electron transport layer of a "n-i-p"-type planar PSC. Compared with a thermally annealed SnO2 TF (T-SnO2 ), the P-SnO2 TF yields a more even surface but also outstanding electrical conductivity with higher electron mobility and a lower number of charge trap sites, consequently achieving a superior PCE of 19.56% in P-SnO2 -based PSCs. These findings motivate the use of a plasma strategy to fabricate various metal oxide TFs using the sol-gel route.

6.
Nanoscale ; 9(42): 16249-16255, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29043370

ABSTRACT

We modified phenyl-C61-butyric acid methyl ester (PCBM) for use as a stable, efficient electron transport layer (ETL) in inverted perovskite solar cells (PSCs). PCBM containing a surfactant Triton X-100 acts as the ETL and NiOX nanocrystals act as a hole transport layer (HTL). Atomic force microscopy and scanning electron microscopy images showed that surfactant-modified PCBM (s-PCBM) forms a high-quality, uniform, and dense ETL on the rough perovskite layer. This layer effectively blocks holes and reduces interfacial recombination. Steady-state photoluminescence and electrochemical impedance spectroscopy analyses confirmed that Triton X-100 improved the electron extraction performance of PCBM. When the s-PCBM ETL was used, the average power conversion efficiency increased from 10.76% to 15.68%. This improvement was primarily caused by the increases in the open-circuit voltage and fill factor. s-PCBM-based PSCs also showed good air-stability, retaining 83.8% of their initial performance after 800 h under ambient conditions.

7.
Small ; 13(38)2017 10.
Article in English | MEDLINE | ID: mdl-28783233

ABSTRACT

Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (Voc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance.

8.
ACS Appl Mater Interfaces ; 9(9): 8113-8120, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28211274

ABSTRACT

There remains tremendous interest in perovskite solar cells (PSCs) in the solar energy field; the certified power conversion efficiency (PCE) now exceeds 20%. Along with research focused on enhancing PCE, studies are also underway concerning PSC commercialization. It is crucial to simplify the fabrication process and reduce the production cost to facilitate commercialization. Herein, we successfully fabricated highly efficient hole-blocking layer (HBL)-free PSCs through vigorously interrupting penetration of hole-transport material (HTM) into fluorine-doped tin oxide by a large grain based-CH3NH3PbI3 (MAPbI3) film, thereby obtaining a PCE of 18.20%. Our results advance the commercialization of PSCs via a simple fabrication system and a low-cost approach in respect of mass production and recyclability.

9.
ACS Appl Mater Interfaces ; 8(31): 19847-52, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27472304

ABSTRACT

Hexagonal ß-NaYF4:Yb(3+), Er(3+) nanoprisms, successfully prepared using a hydrothermal method, were incorporated into CH3NH3PbI3 perovskite solar cells (PSCs) as an upconverting mesoporous layer. Due to their near-infrared (NIR) sunlight harvesting, the PSCs based on the upconverting mesoporous layer exhibited a power conversion efficiency of 16.0%, an increase of 13.7% compared with conventional TiO2 nanoparticle-based PSCs (14.1%). This result suggests that the hexagonal ß-NaYF4:Yb(3+), Er(3+) nanoprisms expand the absorption range of the PSC via upconversion photoluminescence, leading to an enhancement of the photocurrent.

SELECTION OF CITATIONS
SEARCH DETAIL
...