Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 9(11): nwac176, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36601138

ABSTRACT

(-)-Anisomelic acid, isolated from Anisomeles indica (L.) Kuntze (Labiatae) leaves, is a macrocyclic cembranolide with a trans-fused α-methylene-γ-lactone motif. Anisomelic acid effectively inhibits SARS-CoV-2 replication and viral-induced cytopathic effects with an EC50 of 1.1 and 4.3 µM, respectively. Challenge studies of SARS-CoV-2-infected K18-hACE2 mice showed that oral administration of anisomelic acid and subcutaneous dosing of remdesivir can both reduce the viral titers in the lung tissue at the same level. To facilitate drug discovery, we used a semisynthetic approach to shorten the project timelines. The enantioselective semisynthesis of anisomelic acid from the naturally enriched and commercially available starting material (+)-costunolide was achieved in five steps with a 27% overall yield. The developed chemistry provides opportunities for developing anisomelic-acid-based novel ligands for selectively targeting proteins involved in viral infections.

2.
J Am Chem Soc ; 142(1): 573-580, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31789517

ABSTRACT

Pre-schisanartanin C belongs to the family of Schisandra nortriterpenoids with potent antihepatitis, antitumor, and anti-HIV activities. This paper presents the enantioselective total synthesis of pre-schisanartanin C (1). An important step in the total synthesis of 1 is gold-catalyzed intramolecular cyclopropanation of a 1,8-enyne substrate bearing a secondary ester group at the propargylic position to prepare a bicyclo[6.1.0]nonane core. Additional highlights include (i) an asymmetric Diels-Alder reaction to install the initial C5 stereogenic center of 1 and (ii) a sequential Pd-catalyzed Stille coupling, regio- and stereoselective Sharpless asymmetric dihydroxylation, and a subsequent intramolecular lactonization to construct the side chain of 1. The developed chemistry paves the way for the total syntheses of other family members bearing highly rigid bicyclo[6.1.0]nonane cores.


Subject(s)
Triterpenes/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cyclopropanes/chemistry , Magnetic Resonance Spectroscopy , Stereoisomerism , Triterpenes/chemistry , Triterpenes/pharmacology
3.
Nat Commun ; 8: 14233, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28139648

ABSTRACT

Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A-which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.


Subject(s)
Biomimetic Materials/chemical synthesis , Chemistry Techniques, Synthetic , Cyclopropanes/chemistry , Triterpenes/chemical synthesis , Catalysis , Humans , Molecular Structure , Quantum Theory , Schisandra/chemistry , Stereoisomerism , Triterpenes/chemistry
4.
Chem Asian J ; 11(9): 1425-35, 2016 05 06.
Article in English | MEDLINE | ID: mdl-26991640

ABSTRACT

Two independent synthetic approaches were evaluated for the final phase of the asymmetric total synthesis of propindilactone G (1). The key steps that led to the completion of the asymmetric total synthesis included: 1) an intermolecular oxidative heterocoupling reaction of enolsilanes to link the core structure to the side chain; 2) an intermolecular Wittig reaction for the formation of the α,ß,γ,δ-unsaturated ester; and 3) a regio- and stereoselective OsO4 -catalyzed dihydroxylation of an α,ß,γ,δ-unsaturated enone, followed by an intramolecular lactonization reaction to afford the final product. These reactions enabled the synthesis of (+)-propindilactone G in only 20 steps. As a consequence of our synthetic studies, the structure of (+)-propindilactone G has been revised. Furthermore, the direct oxidative coupling strategy for ligation of the core of propindilactone G with its side chain may find application in the syntheses of other natural products and complex molecules.


Subject(s)
Esters/chemical synthesis , Ketones/chemistry , Triterpenes/chemical synthesis , Biological Products/chemical synthesis , Biological Products/chemistry , Esters/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...