Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 518
Filter
1.
Fish Physiol Biochem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954179

ABSTRACT

The wild Onychostoma macrolepis, a species under national class II protection in China, lacks a specific compound feed for captive rearing. Understanding the dietary amino acid pattern is crucial for optimal feed formulation. This study aimed to investigate the effects of the four different dietary amino acid patterns, i.e., anchovy fishmeal protein (FMP, control group) and muscle protein (MP), whole-body protein (WBP), fish egg protein (FEP) of juvenile Onychostoma macrolepis, on the growth performance, body composition, intestinal morphology, enzyme activities, and the expression levels of gh, igf, mtor genes in juveniles. In a 12-week feeding trial with 240 juveniles (3.46±0.04g), the MP group demonstrated superior outcomes in growth performance (FBW, WGR, SGR), feed utilization efficiency (PER, PRE, FCR). Notably, it exhibited higher crude protein content in whole-body fish, enhanced amino acid composition in the liver, and favorable fatty acid health indices (AI, TI, h/H) in muscle compared to other groups (P < 0.05). Morphologically, the MP and FMP groups exhibited healthy features. Additionally, the MP group displayed significantly higher activities of TPS, ALP, and SOD, along with elevated expression levels of gh, igf, mtor genes, distinguishing it from the other groups (P < 0.05). This study illustrated that the amino acid pattern of MP emerged as a suitable dietary amino acid pattern for juvenile Onychostoma macrolepis. Furthermore, the findings provide valuable insights for formulating effective feeds in conserving and sustainably farming protected species, enhancing the research's broader ecological and aquacultural significance.

2.
J Hepatol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960374

ABSTRACT

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

4.
Biochem Pharmacol ; 226: 116413, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971333

ABSTRACT

Chronic nonhealing diabetic wounds are a critical clinical challenge. Regulatory T cells (Tregs) are immunosuppressive modulators affecting wound healing progression by controlling the inflammatory response. The current study attempted to investigate whether the exosomes derived from cord blood (CB) Tregs can accelerate the healing process. Exosomes were isolated from CB-Treg cultures using ultracentrifugation and validated with different specific markers of exosomes. The purified CB-Treg-derived exosomes were co-cultured with peripheral blood mononuclear cells (PBMCs) and CD14+ monocytes. The migration-promoting effect of CB-Treg-derived exosomes on fibroblasts and endothelial cells was investigated. We used thermosensitive Pluronic F-127 hydrogel (PF-127) loaded with CB-Treg-derived exosomes in a diabetic wound healing mouse model. CB-Treg-derived exosomes with 30-120 nm diameters revealed exosome-specific markers, such as TSG101, Alix, and CD63. CB-Treg-derived exosomes were mainly bound to the monocytes when co-cultured with PBMCs, and promoted monocyte polarization to the anti-inflammatory phenotype (M2) in vitro. CB-Treg-derived exosomes enhanced the migration of endothelial cells and fibroblasts. Furthermore, CB-Treg-derived exosomes treatment accelerated wound healing by downregulating inflammatory factor levels and upregulating the M2 macrophage ratio in vivo. Our findings indicated that CB-Treg-derived exosomes could be a promising cell-free therapeutic strategy for diabetic wound healing, partly by targeting monocytes.

6.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1044-1054, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884239

ABSTRACT

Aiming to understand the responses of soil seed bank to different water levels, we investigated vegetation and soil seed bank along a water level gradient (frequently flooded area, unflooded area) on the floodplain wetland of Juzhang River. We used the structural equation model to explore the direct and indirect effects of water level on soil seed bank, and used non-metric multidimensional scaling (NMDS) to assess the role of soil seed bank for vegetation regeneration. The results showed that the density of transient and persistent seed banks at unflooded area was 36.9% and 7.8% higher than that of frequently flooded area, respectively. Shannon index and Pielou index of seed bank and vegetation were significantly affected by water level and sampling location. Water level significantly affected the similarity between seed bank and aboveground vegetation, and the similarity of persistent seed bank with aboveground vegetation was significantly higher than that with transient seed bank. Structural equation model showed that water level had a direct effect on seed bank density, and indirect effects on density and richness of seed bank via affecting soil pH and NH4+-N content. NMDS results showed that there was no significant difference in the composition of the persistent seed bank and vegetation community in autumn under different water levels, but water level significantly changed the community composition of transient seed bank. Transient seed bank was affected by the vegetation and soil property, while persistent seed bank was determined by aboveground vegetation and water level. Although soil seed bank had low regeneration potential for the vegetation communities in floodplain wetlands, soil seed bank could not be neglected during the restoration of propagule diversity after disturbance in wetlands. Persistent seed bank would be an importance source of diversity of propagules for floodplain wetlands restoration following disturbance.


Subject(s)
Rivers , Soil , Wetlands , China , Soil/chemistry , Floods , Conservation of Natural Resources , Seeds/growth & development , Ecosystem , Water Movements , Seed Bank
7.
FEBS Open Bio ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898362

ABSTRACT

Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.

8.
ChemMedChem ; : e202400088, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758134

ABSTRACT

Tumour-derived sialoglycans, bearing the charged nonulosonic sugar sialic acid at their termini, play a critical role in tumour cell adhesion and invasion, as well as evading cell death and immune surveillance. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans, are highly upregulated in cancer, with tumour hypersialylation strongly correlated with tumour growth, metastasis and drug resistance. As a result, desialylation of the tumour cell surface using either targeted delivery of a pan-ST inhibitor (or sialidase) or systemic delivery of a non-toxic selective ST inhibitors are being pursued as potential new anti-metastatic strategies against multiple cancers including pancreatic, ovarian, breast, melanoma and lung cancer. Herein, we have employed molecular modelling to give insights into the selectivity observed in a series of selective ST inhibitors that incorporate a uridyl ring in place of the cytidine of the natural donor (CMP-Neu5Ac) and replace the charged phosphodiester linker of classical ST inhibitors with a neutral α-hydroxy-1,2,3-triazole linker. The inhibitory activities of the nascent compounds were determined against recombinant human ST enzymes (ST3GAL1, ST6GAL1, ST8SIA2) showing promising activity and selectivity towards specific ST sub-types. Our ST inhibitors are non-toxic and show improved synthetic accessibility and drug-likeness compared to earlier nucleoside-based ST inhibitors.

9.
Biomicrofluidics ; 18(3): 034102, 2024 May.
Article in English | MEDLINE | ID: mdl-38726372

ABSTRACT

Deformation plays a vital role in the survival of natural organisms. One example is that plants deform themselves to face the sun for sufficient sunlight exposure, which allows them to produce nutrients through photosynthesis. Drawing inspiration from nature, researchers have been exploring the development of 3D deformable materials. However, the traditional approach to manufacturing deformable hydrogels relies on complex technology, which limits their potential applications. In this study, we simulate the stress variations observed in the plant tissue to create a 3D structure from a 2D material. Using UV curing technology, we create a single-layer poly(N-isopropylacrylamide) hydrogel sheet with microchannels that exhibit distinct swelling rates when subjected to stimulation. After a two-step curing process, we produce a poly(N-isopropylacrylamide)-polyethylene glycol diacrylatedouble-layer structure that can be manipulated to change its shape by controlling the light and solvent content. Based on the double-layer structure, we fabricate a dual-response driven bionic mimosa robot that can perform a variety of functions. This soft robot can not only reversibly change its shape but also maintain a specific shape without continuous stimulation. Its capacity for reversible deformation, resulting from internal stress, presents promising application prospects in the biomedical and soft robotics domain. This study delivers an insightful framework for the development of programmable soft materials.

10.
Front Genet ; 15: 1387688, 2024.
Article in English | MEDLINE | ID: mdl-38784031

ABSTRACT

Background: Mechanical ventilation (MV) is often required in critically ill patients. However, prolonged mechanical ventilation can lead to Ventilator-induced diaphragmatic dysfunction (VIDD), resulting in difficulty in extubation after tracheal intubation, prolonged ICU stay, and increased mortality. At present, the incidence of diabetes is high in the world, and the prognosis of diabetic patients with mechanical ventilation is generally poor. Therefore, the role of diabetes in the development of VIDD needs to be discovered. Methods: MV modeling was performed on C57 mice and DB mice, and the control group was set up in each group. After 12 h of mechanical ventilation, the muscle strength of the diaphragm was measured, and the muscle fiber immunofluorescence staining was used to verify the successful establishment of the MV model. RNA sequencing (RNA-seq) method was used to detect mRNA expression levels of the diaphragms of each group, and then differential expressed gene analysis, Heatmap analysis, WGCNA analysis, Venn analysis, GO and KEGG enrichment analysis were performed. qRT-PCR was used to verify the expression of the selected mRNAs. Results: Our results showed that, compared with C57 control mice, the muscle strength and muscle fiber cross-sectional area of mice after mechanical ventilation decreased, and DB mice showed more obvious in this respect. RNA-seq showed that these differential expressed (DE) mRNAs were mainly related to genes such as extracellular matrix, collagen, elastic fiber and Fbxo32. GO and KEGG enrichment analysis showed that the signaling pathways associated with diabetes were mainly as follows: extracellular matrix (ECM), protein digestion and absorption, PI3K-Akt signaling pathway, calcium signaling pathway, MAPK signaling pathway and AGE-RAGE signaling pathway in diabetic complications, etc. ECM has the closest relationship with VIDD in diabetic mice. The key genes determined by WGCNA and Venn analysis were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-seq. Conclusion: VIDD can be aggravated in diabetic environment. This study provides new evidence for mRNA changes after mechanical ventilation in diabetic mice, suggesting that ECM and collagen may play an important role in the pathophysiological mechanism and progression of VIDD in diabetic mice, and provides some clues for the research, diagnosis, and treatment of VIDD in diabetic context.

11.
BMC Cancer ; 24(1): 630, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783240

ABSTRACT

BACKGROUND: Tumor morphology, immune function, inflammatory levels, and nutritional status play critical roles in the progression of intrahepatic cholangiocarcinoma (ICC). This multicenter study aimed to investigate the association between markers related to tumor morphology, immune function, inflammatory levels, and nutritional status with the prognosis of ICC patients. Additionally, a novel tumor morphology immune inflammatory nutritional score (TIIN score), integrating these factors was constructed. METHODS: A retrospective analysis was performed on 418 patients who underwent radical surgical resection and had postoperative pathological confirmation of ICC between January 2016 and January 2020 at three medical centers. The cohort was divided into a training set (n = 272) and a validation set (n = 146). The prognostic significance of 16 relevant markers was assessed, and the TIIN score was derived using LASSO regression. Subsequently, the TIIN-nomogram models for OS and RFS were developed based on the TIIN score and the results of multivariate analysis. The predictive performance of the TIIN-nomogram models was evaluated using ROC survival curves, calibration curves, and clinical decision curve analysis (DCA). RESULTS: The TIIN score, derived from albumin-to-alkaline phosphatase ratio (AAPR), albumin-globulin ratio (AGR), monocyte-to-lymphocyte ratio (MLR), and tumor burden score (TBS), effectively categorized patients into high-risk and low-risk groups using the optimal cutoff value. Compared to individual metrics, the TIIN score demonstrated superior predictive value for both OS and RFS. Furthermore, the TIIN score exhibited strong associations with clinical indicators including obstructive jaundice, CEA, CA19-9, Child-pugh grade, perineural invasion, and 8th edition AJCC N stage. Univariate and multivariate analysis confirmed the TIIN score as an independent risk factor for postoperative OS and RFS in ICC patients (p < 0.05). Notably, the TIIN-nomogram models for OS and RFS, constructed based on the multivariate analysis and incorporating the TIIN score, demonstrated excellent predictive ability for postoperative survival in ICC patients. CONCLUSION: The development and validation of the TIIN score, a comprehensive composite index incorporating tumor morphology, immune function, inflammatory level, and nutritional status, significantly contribute to the prognostic assessment of ICC patients. Furthermore, the successful application of the TIIN-nomogram prediction model underscores its potential as a valuable tool in guiding individualized treatment strategies for ICC patients. These findings emphasize the importance of personalized approaches in improving the clinical management and outcomes of ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Nutritional Status , Humans , Cholangiocarcinoma/surgery , Cholangiocarcinoma/pathology , Male , Female , Retrospective Studies , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology , Middle Aged , Prognosis , Aged , Nomograms , Inflammation , Biomarkers, Tumor , Alkaline Phosphatase/blood , Tumor Burden , Nutrition Assessment , Serum Albumin/analysis , Serum Albumin/metabolism , ROC Curve , Monocytes/pathology
12.
Adv Sci (Weinh) ; 11(24): e2306810, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647380

ABSTRACT

Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.


Subject(s)
DNA, Circular , Epigenesis, Genetic , Hepatitis B virus , RNA, Long Noncoding , Repressor Proteins , Trans-Activators , Humans , Hepatitis B virus/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Epigenesis, Genetic/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Transcription, Genetic/genetics , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology
13.
Fish Physiol Biochem ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625478

ABSTRACT

This study aims to explore whether glycerol monolaurate (GML) can improve reproductive performance of female zebrafish (Danio rerio) and the survival percentage of their offspring. Three kinds of isonitrogenous and isolipid diets, including basal diet (control) and basal diet containing 0.75 g/kg GML (L_GML) and 1.5 g/kg GML (H_GML), were prepared for 4 weeks feeding trial. The results show that GML increased the GSI of female zebrafish. GML also enhanced reproductive performance of female zebrafish. Specifically, GML increased spawning number and hatching rate of female zebrafish. Moreover, GML significantly increased the levels of triglycerides (TG), lauric acid, and estradiol (E2) in the ovary (P < 0.05). Follicle-stimulating hormone (FSH) levels in the ovary and brain also significantly increased in the L_GML group (P < 0.05). Besides, dietary GML regulated the hypothalamus-pituitary-gonad (HPG) axis evidenced by the changed expression levels of HPG axis-related genes in the brain and ovary of the L_GML and H_GML groups compared with the control group. Furthermore, compared with the control group, the expression levels of HPG axis-related genes (kiss2, kiss1r, kiss2r, gnrh3, gnrhr1, gnrhr3, lhß, and esr2b) in the brain of the L_GML group were significantly increased (P < 0.05), and the expression levels of HPG axis-related genes (kiss1, kiss2, kiss2r, gnrh2, gnrh3, gnrhr4, fshß, lhß, esr1, esr2a, and esr2b) in the brain of the H_GML group were significantly increased (P < 0.05). These results suggest that GML may stimulate the expression of gnrh2 and gnrh3 by increasing the expression level of kiss1 and kiss2 genes in the hypothalamus, thus promoting the synthesis of FSH and E2. The expression levels of genes associated with gonadotropin receptors (fshr and lhr) and gonadal steroid hormone synthesis (cyp11a1, cyp17, and cyp19a) in the ovary were also significantly upregulated by dietary GML (P < 0.05). The increasing expression level of cyp19a also may promote the FSH synthesis. Particularly, GML enhanced the richness and diversity and regulated the species composition of intestinal microbiota in female zebrafish. Changes in certain intestinal microorganisms may be related to the expression of certain genes involved in the HPG axis. In addition, L_GML and H_GML both significantly decreased larvae mortality at 96 h post fertilization and their mortality during the first-feeding period (P < 0.05), revealing the enhanced the starvation tolerance of zebrafish larvae. In summary, dietary GML regulated genes related to HPG axis to promote the synthesis of E2 and FSH and altered gut microbiota in female zebrafish, and improved the survival percentage of their offspring.

14.
Small ; : e2311951, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593355

ABSTRACT

Soft actuators have assumed vital roles in a diverse number of research and application fields, driving innovation and transformative advancements. Using 3D molding of smart materials and combining these materials through structural design strategies, a single soft actuator can achieve multiple functions. However, it is still challenging to realize soft actuators that possess high environmental adaptability while capable of different tasks. Here, the response threshold of a soft actuator is modulated by precisely tuning the ratio of stimulus-responsive groups in hydrogels. By combining a heterogeneous bilayer membrane structure and in situ multimaterial printing, the obtained soft actuator deformed in response to changes in the surrounding medium. The response medium is suitable for both biotic and abiotic environments, and the response rate is fast. By changing the surrounding medium, the precise capture, manipulation, and release of micron-sized particles of different diameters in 3D are realized. In addition, static capture of a single red blood cell is realized using biologically responsive medium changes. Finally, the experimental results are well predicted using finite element analysis. It is believed that with further optimization of the structure size and autonomous navigation platform, the proposed soft microactuator has significant potential to function as an easy-to-manipulate multifunctional robot.

16.
Diabetol Metab Syndr ; 16(1): 71, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515175

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy. METHODS: UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated. RESULTS: UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period. CONCLUSIONS: Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.

17.
Front Oncol ; 14: 1301052, 2024.
Article in English | MEDLINE | ID: mdl-38549933

ABSTRACT

Background: Normal hepatic functional reserve is the key to avoiding liver failure after liver surgery. This study investigated the assessment of hepatic functional reserve using liver shear wave velocity (LSWV) combined with biochemical indicators, tumor volume, and portal vein diameter. Methods: In this single-center prospective study, a total of 123 patients with hepatocellular carcinoma (HCC) were divided into a test group (n=92) and a validation group (n=31). All patients were Child-Pugh grade A. The indocyanine green retention rate at 15 min (ICG-R15), liver shear wave velocity (LSWV), portal vein diameter (Dpv), alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GGT), albumin (ALB), prothrombin time (PT), and also liver tumor volume (maximum diameter ≤5 cm) were measured. In the test group, multiple parameters were used to evaluate hepatic functional reserve, and the multiparametric model was established. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic performance of the multiparametric model. In the validation group, the predictive effectiveness of the multiparametric model was analyzed using consistency tests. Results: It was revealed that LSWV, ALB, and PT were statistically significant in evaluation of the hepatic functional reserve (P<0.05). The multiparametric model was formulated as follows: Y= -18.954 + 9.726*LSWV-0.397*ALB+2.063*PT. The value of the area under the curve (AUC) for the multiparametric model was 0.913 (95% confidence interval (CI): 0.835-0.962, P< 0.01), with a cutoff value of 16.656 (sensitivity, 0.763; specificity, 0.926). The Kappa value of consistency testing was 0.655 (P<0.01). Conclusion: LSWV combined with ALB and PT exhibited a high predictive effectiveness for the assessment of hepatic functional reserve, assisting the clinical diagnosis and management of liver diseases.

18.
Behav Sci (Basel) ; 14(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38540529

ABSTRACT

Learning from work failures is not only beneficial for individual development but also crucial for improving organizational performance and achieving sustainable development. We hypothesize that leader bottom-line mentality, which is commonly used by leaders to prevent profit and performance losses, may reduce subordinates learning from work failures. Drawing on social information processing theory, this paper examines how and when leader bottom-line mentality negatively affects subordinates learning from work failures. We tested our hypotheses through a three-wave survey of 245 employees from several high-tech companies in China. For data analysis, we used SPSS 26.0 and Mplus 8.0 to test the theoretical model and research hypotheses. The results indicated that leader bottom-line mentality has a negative indirect effect on subordinates learning from work failures through the mediating role of subordinates' psychological availability. In addition, subordinate self-compassion can mitigate this negative mediating mechanism. The present study has several theoretical and practical implications for the current literature.

19.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431110

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Receptors, Glycine , Lignans/pharmacology , Pain , Calcium Channels, N-Type , Analgesics/pharmacology , Analgesics/therapeutic use , Sodium Channels , Cyclooctanes
20.
ACS Nano ; 18(8): 6130-6146, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38349890

ABSTRACT

Gastric cancer is one of the most prevalent digestive malignancies. The lack of effective in vitro peritoneal models has hindered the exploration of the potential mechanisms behind gastric cancer's peritoneal metastasis. An accumulating body of research indicates that small extracellular vesicles (sEVs) play an indispensable role in peritoneal metastasis of gastric cancer cells. In this study, a biomimetic peritoneum was constructed. The biomimetic model is similar to real peritoneum in internal microstructure, composition, and primary function, and it enables the recurrence of peritoneal metastasis process in vitro. Based on this model, the association between the mechanical properties of sEVs and the invasiveness of gastric cancer was identified. By performing nanomechanical analysis on sEVs, we found that the Young's modulus of sEVs can be utilized to differentiate between malignant clinical samples (ascites) and nonmalignant clinical samples (peritoneal lavage). Furthermore, patients' ascites-derived sEVs were verified to stimulate the mesothelial-to-mesenchymal transition, thereby promoting peritoneal metastasis. In summary, nanomechanical analysis of living sEVs could be utilized for the noninvasive diagnosis of malignant degree and peritoneal metastasis of gastric cancer. This finding is expected to contribute future treatments.


Subject(s)
Extracellular Vesicles , Peritoneal Neoplasms , Stomach Neoplasms , Humans , Peritoneum/pathology , Stomach Neoplasms/diagnosis , Peritoneal Neoplasms/diagnosis , Ascites/pathology , Biomimetics , Extracellular Vesicles/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...