Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
1.
Nat Commun ; 15(1): 4718, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830881

ABSTRACT

Artificial photosynthesis using carbon nitride (g-C3N4) holds a great promise for sustainable and cost-effective H2O2 production, but the high carrier recombination rate impedes its efficiency. To tackle this challenge, we propose an innovative method involving multispecies iodine mediators (I-/I3-) intercalation through a pre-photo-oxidation process using potassium iodide (suspected deteriorated "KI") within the g-C3N4 framework. Moreover, we introduce an external electric field by incorporating cationic methyl viologen ions to establish an auxiliary electron transfer channel. Such a unique design drastically improves the separation of photo-generated carriers, achieving an impressive H2O2 production rate of 46.40 mmol g-1 h-1 under visible light irradiation, surpassing the most visible-light H2O2-producing systems. Combining various advanced characterization techniques elucidates the inner photocatalytic mechanism, and the application potential of this photocatalytic system is validated with various simulation scenarios. This work presents a significative strategy for preparing and applying highly efficient g-C3N4-based catalysts in photochemical H2O2 production.

2.
Proc Natl Acad Sci U S A ; 121(23): e2403544121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805289

ABSTRACT

Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-O•). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O• radicals. The specificity of CH3C(O)O• generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O• in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.

3.
Environ Sci Technol ; 58(22): 9636-9645, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38770702

ABSTRACT

Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.


Subject(s)
Drug Resistance, Microbial , Drug Resistance, Microbial/genetics , Wastewater , Humans , Environmental Monitoring/methods , Cities , China , COVID-19
4.
PNAS Nexus ; 3(4): pgae118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38595803

ABSTRACT

Enzymatic humification plays a crucial biogeochemical role in eliminating steroidal estrogens and expanding organic carbon stocks. Estrogenic contaminants in agroecosystems can be taken up and acropetally translocated by crops, but the roles of laccase-triggered rhizospheric humification (L-TRH) in pollutant dissipation and plant uptake remain poorly understood. In this study, the laccase-induced decontamination and humification mechanisms of 17ß-estradiol (E2) in water-crop media were investigated by performing greenhouse pot experiments with maize seedlings (Zea mays L.). The results demonstrated that L-TRH effectively dissipated E2 in the rhizosphere solution and achieved the kinetic constants of E2 dissipation at 10 and 50 µM by 8.05 and 2.75 times as much as the treatments without laccase addition, respectively. The copolymerization of E2 and root exudates (i.e. phenols and amino acids) consolidated by L-TRH produced a larger amount of humified precipitates with the richly functional carbon architectures. The growth parameters and photosynthetic pigment levels of maize seedlings were greatly impeded after a 120-h exposure to 50 µM E2, but L-TRH motivated the detoxication process and thus mitigated the phytotoxicity and bioavailability of E2. The tested E2 contents in the maize tissues initially increased sharply with the cultivation time but decreased steadily. Compared with the treatment without laccase addition, the uptake and accumulation of E2 in the maize tissues were obviously diminished by L-TRH. E2 oligomers such as dimer, trimer, and tetramer recognized in the rhizosphere solution were also detected in the root tissues but not in the shoots, demonstrating that the acropetal translocation of E2 oligomers was interrupted. These results highlight a promising strategy for decontaminating estrogenic pollutants, boosting rhizospheric humification, and realizing low-carbon emissions, which would be beneficial for agroenvironmental bioremediation and sustainability.

5.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38571383

ABSTRACT

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Subject(s)
Disinfectants , Disinfection , Disinfection/methods , Extracellular Polymeric Substance Matrix , Disinfectants/pharmacology , Chlorine/pharmacology , Kinetics
6.
Nat Commun ; 15(1): 2327, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485966

ABSTRACT

Polymerization-driven removal of pollutants in advanced oxidation processes (AOPs) offers a sustainable way for the simultaneous achievement of contamination abatement and resource recovery, supporting a low-carbon water purification approach. However, regulating such a process remains a great challenge due to the insufficient microscopic understanding of electronic structure-dependent reaction mechanisms. Herein, this work probes the origin of catalytic pollutant polymerization using a series of transition metal (Cu, Ni, Co, and Fe) single-atom catalysts and identifies the d-band center of active site as the key driver for polymerization transfer of pollutants. The high-valent metal-oxo species, produced via peroxymonosulfate activation, are found to trigger the pollutant removal via polymerization transfer. Phenoxyl radicals, identified by the innovative spin-trapping and quenching approaches, act as the key intermediate in the polymerization reactions. More importantly, the oxidation capacity of high-valent metal-oxo species can be facilely tuned by regulating their binding strength for peroxymonosulfate through d-band center modulation. A 100% polymerization transfer ratio is achieved by lowering the d-band center. This work presents a paradigm to dynamically modulate the electronic structure of high-valent metal-oxo species and optimize pollutant removal from wastewater via polymerization.

7.
PNAS Nexus ; 3(2): pgae040, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328784

ABSTRACT

Aromatic amines (AAs), ubiquitous in industrial applications, pose significant environmental hazards due to their resistance to conventional wastewater treatments. Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have been proposed as effective strategies for addressing persistent AA contaminants. While the organic radicals generated in these systems are believed to be selective and highly oxidative, acetate residue complicates the evaluation of AA removal efficiency. In this work, we explored transformation pathways of AAs in a representative Co(II)-catalyzed PAA system, revealing five side reactions (i.e. nitrosation, nitration, coupling, dimerization, and acetylation) that yield 17 predominantly stable and toxic by-products. The dominant reactive species was demonstrated as Co-OOC(O)CH3, which hardly facilitated ring-opening reactions. Our findings highlight the potential risks associated with PAA-based AOPs for AA degradation and provide insights into selecting suitable catalytic systems aimed at efficient and by-product-free degradation of pollutants containing aromatic -NH2.

8.
Adv Mater ; 36(14): e2310657, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193844

ABSTRACT

Extracting lithium selectively and efficiently from brine sources is crucial for addressing energy and environmental challenges. The electrochemical system employing LiMn2O4 (LMO) electrodes has been recognized as an effective method for lithium recovery. However, the lithium selectivity and stability of LMO need further enhancement for its practical applications. Herein, the Al-doped LMO with reduced lattice constant is successfully fabricated through a facile one-step solid-state sintering method, leading to enhanced lithium selectivity. The reduced lattice constant in Al-doped LMO is proved through spectroscopic analyses and theoretic calculations. Compared to the original LMO, the Al-doped LMO (LiAl0.05Mn1.95O4, LMO-Al0.05) exhibits highercapacitance, lower resistance, and improved stability. Moreover, the LMO-Al0.05 with reduced lattice constant can offer higher Li+ diffusion coefficient and lower intercalation energy revealed by cyclic voltammetry and multiscale simulations. When employed in hybrid capacitive deionization (CDI), the LMO-Al0.05 obtains a Li+ intercalation capacity of 21.7 mg g-1 and low energy consumption of 2.6 Wh mol-1 Li+. Importantly, the LMO-Al0.05 achieves a high Li+ extraction percentage (≈86%) with Li+/Na+ and Li+/Mg2+ selectivity of 1653.8 and 434.9, respectively, in synthetic brine. The results demonstrate that the Al-doped LMO with reduced lattice constant could be a sustainable solution for electrochemical lithium extraction.

9.
Proc Natl Acad Sci U S A ; 121(4): e2314396121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38236736

ABSTRACT

In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.

10.
Nat Commun ; 15(1): 193, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167494

ABSTRACT

Direct electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction presents a burgeoning alternative to the conventional energy-intensive anthraquinone process for on-site applications. Nevertheless, its adoption is currently hindered by inferior H2O2 selectivity and diminished H2O2 yield induced by consecutive H2O2 reduction or Fenton reactions. Herein, guided by theoretical calculations, we endeavor to overcome this challenge by activating a main-group Pb single-atom catalyst via a local micro-environment engineering strategy employing a sulfur and oxygen super-coordinated structure. The main-group catalyst, synthesized using a carbon dot-assisted pyrolysis technique, displays an industrial current density reaching 400 mA cm-2 and elevated accumulated H2O2 concentrations (1358 mM) with remarkable Faradaic efficiencies. Both experimental results and theoretical simulations elucidate that S and O super-coordination directs a fraction of electrons from the main-group Pb sites to the coordinated oxygen atoms, consequently optimizing the *OOH binding energy and augmenting the 2e- oxygen reduction activity. This work unveils novel avenues for mitigating the production-depletion challenge in H2O2 electrosynthesis through the rational design of main-group catalysts.

11.
Water Res X ; 21: 100200, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38098884

ABSTRACT

Previous researches have primarily emphasized the deleterious impacts of NH4+ on anaerobic granular sludge due to its biotoxicity. Despite this, the role of NH4+ as a monovalent cation in leaching multivalent Ca2+, thereby hindering granule formation and undermining its stability, remains underappreciated. This study investigated the potential of NH4+ to leach Ca2+ from anaerobic granular sludges. The results indicated that a shock loading of NH4+ at a concentration of 900 mg/L caused a Ca2+ leaching of 57.1 mg/L at pH 7.0. In an acidified environment (pH 5.0), the shock loading resulted in a Ca2+ release of 127.3 mg/L, a magnitude 5.24 times greater than the control group. The leaching process modestly affected granular sludge activity and size but markedly compromised granular strength due to calcium loss. Subsequent to the NH4+ shock, the granular strength manifested a significant reduction, as evidenced by a 15-fold increase in protein release from the granules compared to the intact ones. Additionally, NH4+ shock altered the calcium partitioning within the granular sludge, resulting in a decrease in residual calcium and a concomitant increase in bound calcium, further affecting granular strength. This study underscores the overlooked significant phenomenon of NH4+ shock-leaching Ca2+ in anaerobic granular sludge, which warrants significant attention given to its rapid and deleterious effects on granular strength and the shift in calcium state.

12.
Water Res ; 246: 120743, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857007

ABSTRACT

The exploring of molecular-level heterogeneity of dissolved organic matter (DOM) in highly connected water bodies is of great importance for pollution tracing and lake management, and provides new perspectives on the transformations and fate of DOM in aquatic systems. However, the inherent homogeneity of DOM in connected water bodies poses challenges for its heterogeneity analysis. In this work, an innovative method combining fluorescence spectroscopy, high-resolution mass spectrometry (HRMS), and cluster analysis was developed to reveal the heterogeneity of DOM in highly connected water bodies at the molecular level. We detected 4538 molecules across 36 sampling sites in Chaohu Lake using HRMS. Cluster analysis based on excitation-emission matrix (EEM) data effectively divided the sampling sites into four clusters, representing the water bodies from West Chaohu Lake, East Chaohu Lake, agricultural land, and urban areas. Analysis of DOM in the western and eastern parts of the lake revealed that aerobic degradation led to a decrease in CHOS and aliphatic compounds, alongside an increase in CHO and highly unsaturated and phenolic compounds. Furthermore, we unveiled the characteristics and sources of heterogeneity in DOM from agricultural land and urban areas. Our method accurately captured the heterogeneous distribution of DOM in the lake and revealed the heterogeneous composition of DOM at molecular level. This work underscores the importance of integrating complementary spectroscopic analyses with HRMS in DOM research with similar compositions.


Subject(s)
Dissolved Organic Matter , Humic Substances , Mass Spectrometry , Humic Substances/analysis , Agriculture , Spectrometry, Fluorescence , Lakes/chemistry , Water/analysis
13.
Water Res ; 246: 120737, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857011

ABSTRACT

Reliable and cost-effective methods for monitoring microbial activity are critical for process control in wastewater treatment plants. The dehydrogenase activity (DHA) test has been recognized as an efficient measure of biological activity due to its simplicity and broad applicability. Nevertheless, the existing DHA test methods suffer from imperfections and are difficult to implement as routine monitoring techniques. In this work, an accurate and cost-effective modified DHA approach was developed and the procedure for the DHA test was critically evaluated with respect to the standard construction, sample pretreatment, incubation and extraction conditions. The feasibility of the modified DHA test was demonstrated by comparison with the oxygen uptake rate and adenosine triphosphate in a sequencing batch reactor. The sensitivities of the two typical tetrazolium salts to toxicant inhibition by heavy metals and antibiotics were compared, revealing that 2,3,5-triphenyltetrazolium chloride (TTC) exhibited a higher sensitivity. Furthermore, the sensitivity mechanism of the two DHA tests was elucidated through electrochemical experiments, theoretical analysis and molecular simulations. Both tetrazolium salts were found to be effective artificial electron acceptors due to their low redox potentials. Molecular docking simulations revealed that TTC could outperform other tetrazolium salts in accepting electrons and hydrogens from dehydrogenase. Overall, the modified DHA approach presents an accurate and cost-effective way to measure microbial activity, making it a practical tool for wastewater treatment plants.


Subject(s)
Anti-Bacterial Agents , Water Purification , Molecular Docking Simulation , Tetrazolium Salts/chemistry , Tetrazolium Salts/pharmacology , Anti-Bacterial Agents/pharmacology , Oxidoreductases
14.
Proc Natl Acad Sci U S A ; 120(43): e2311585120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844255

ABSTRACT

Single-atom Fenton-like catalysis has attracted significant attention, yet the quest for controllable synthesis of single-atom catalysts (SACs) with modulation of electron configuration is driven by the current disadvantages of poor activity, low selectivity, narrow pH range, and ambiguous structure-performance relationship. Herein, we devised an innovative strategy, the slow-release synthesis, to fabricate superior Cu SACs by facilitating the dynamic equilibrium between metal precursor supply and anchoring site formation. In this strategy, the dynamics of anchoring site formation, metal precursor release, and their binding reaction kinetics were regulated. Bolstered by harmoniously aligned dynamics, the selective and specific monatomic binding reactions were ensured to refine controllable SACs synthesis with well-defined structure-reactivity relationship. A copious quantity of monatomic dispersed metal became deposited on the C3N4/montmorillonite (MMT) interface and surface with accessible exposure due to the convenient mass transfer within ordered MMT. The slow-release effect facilitated the generation of targeted high-quality sites by equilibrating the supply and demand of the metal precursor and anchoring site and improved the utilization ratio of metal precursors. An excellent Fenton-like reactivity for contaminant degradation was achieved by the Cu1/C3N4/MMT with diminished toxic Cu liberation. Also, the selective ·OH-mediated reaction mechanism was elucidated. Our findings provide a strategy for regulating the intractable anchoring events and optimizing the microenvironment of the monatomic metal center to synthesize superior SACs.

15.
Water Res ; 246: 120681, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37801982

ABSTRACT

The synergistic effect of protein-silica complexation leads to exacerbated membrane fouling in the membrane desalination process, exceeding the individual impacts of silica scaling or protein fouling. However, the molecular-level dynamics of silica binding to proteins and the resulting structural changes in both proteins and silica remain poorly understood. This study investigates the complexation process between silica and proteins-negatively charged bovine serum albumin (BSA) and positively charged lysozyme (LYZ) at neutral pH-using infrared spectroscopy (IR), in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and multiple computational simulations. The findings reveal that both protein and silica structures undergo changes during the complexation process, with calcium ions in the solution significantly exacerbating these alterations. In particular, in situ ATR-FTIR combined with two-dimensional correlation spectroscopy analysis shows that BSA experiences more pronounced unfolding, providing additional binding sites for silica adsorption compared to LYZ. The adsorbed proteins promote silica polymerization from lower-polymerized to higher-polymerized species. Furthermore, molecular dynamics simulations demonstrate greater conformational variation in BSA through root-mean-square-deviation analysis and the bridging role of calcium ions via mean square displacement analysis. Molecular docking and density functional theory calculations identify the binding sites and energy of silica on proteins. In summary, this research offers a comprehensive understanding of the protein-silica complexation process, contributing to the knowledge of synergistic behaviors of inorganic scaling and organic fouling on membrane surfaces. The integrated approach used here may also be applicable for exploring other complex complexation processes in various environments.


Subject(s)
Calcium , Silicon Dioxide , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared , Ions , Adsorption
16.
Adv Mater ; : e2305924, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37698463

ABSTRACT

Utilizing renewable biomass as a substitute for fossil resources to produce high-value chemicals with a low carbon footprint is an effective strategy for achieving a carbon-neutral society. Production of chemicals via single-atom catalysis is an attractive proposition due to its remarkable selectivity and high atomic efficiency. In this work, a supramolecular-controlled pyrolysis strategy is employed to fabricate a palladium single-atom (Pd1 /BNC) catalyst with B-doped Pd-Nx atomic configuration. Owing to the meticulously tailored local coordination microenvironment, the as-synthesized Pd1 /BNC catalyst exhibits remarkable conversion capability for a wide range of biomass-derived aldehydes/ketones. Thorough characterizations and density functional theory calculations reveal that the highly polar metal-N-B site, formed between the central Pd single atom and its adjacent N and B atoms, promotes hydrogen activation from the donor (reductants) and hydrogen transfer to the acceptor (C═O group), consequently leading to exceptional selectivity. This system can be further extended to directly synthesize various aromatic and furonic amines from renewable lignocellulosic biomass, with their greenhouse gas emission potentials being negative in comparison to those of fossil-fuel resource-based amines. This research presents a highly effective and sustainable methodology for constructing C─N bonds, enabling the production of a diverse array of amines from carbon-neutral biomass resources.

17.
Nat Commun ; 14(1): 5134, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612275

ABSTRACT

Electrochemical technology is a robust approach to removing toxic and persistent chlorinated organic pollutants from water; however, it remains a challenge to design electrocatalysts with high activity and selectivity as elaborately as natural reductive dehalogenases. Here we report the design of high-performance electrocatalysts toward water dechlorination by mimicking the binding pocket configuration and catalytic center of reductive dehalogenases. Specifically, our designed electrocatalyst is an assembled heterostructure by sandwiching a molecular catalyst into the interlayers of two-dimensional graphene oxide. The electrocatalyst exhibits excellent dechlorination performance, which enhances reduction of intermediate dichloroacetic acid by 7.8 folds against that without sandwich configuration and can selectively generate monochloro-groups from trichloro-groups. Molecular simulations suggest that the sandwiched inner space plays an essential role in tuning solvation shell, altering protonation state and facilitating carbon-chlorine bond cleavage. This work demonstrates the concept of mimicking natural reductive dehalogenases toward the sustainable treatment of organohalogen-contaminated water and wastewater.

18.
Environ Microbiol ; 25(12): 2943-2957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602917

ABSTRACT

Extracellular electron transfer (EET) empowers electrogens to catalyse the bioconversion of a wide range of xenobiotics in the environment. Synthetic bioengineering has proven effective in promoting EET output. However, conventional strategies mainly focus on modifications of EET-related genes or pathways, which leads to a bottleneck due to the intricate nature of electrogenic metabolic properties and intricate pathway regulation that remain unelucidated. Herein, we propose a novel EET pathway-independent approach, from an energy manipulation perspective, to enhance microbial EET output. The Controlled Hydrolyzation of ATP to Enhance Extracellular Respiration (CHEER) strategy promotes energy utilization and persistently reduces the intracellular ATP level in Shewanella oneidensis, a representative electrogenic microbe. This approach leads to the accelerated consumption of carbon substrate, increased biomass accumulation and an expanded intracellular NADH pool. Both microbial electrolysis cell and microbial fuel cell tests exhibit that the CHEER strain substantially enhances EET capability. Analysis of transcriptome profiles reveals that the CHEER strain considerably bolsters biomass synthesis and metabolic activity. When applied to the bioconversion of model xenobiotics including methyl orange, Cr(VI) and U(VI), the CHEER strain consistently exhibits enhanced removal efficiencies. This work provides a new perspective and a feasible strategy to enhance microbial EET for efficient xenobiotic conversion.


Subject(s)
Shewanella , Xenobiotics , Xenobiotics/metabolism , Electron Transport , Cell Respiration , Shewanella/genetics , Shewanella/metabolism , Respiration , Adenosine Triphosphate/metabolism
19.
Adv Sci (Weinh) ; 10(29): e2302670, 2023 10.
Article in English | MEDLINE | ID: mdl-37587775

ABSTRACT

Electroactive microbial cells have evolved unique extracellular electron transfer to conduct the reactions via redox outer-membrane (OM) proteins. However, the electron transfer mechanism at the interface of OM proteins and nanomaterial remains unclear. In this study, the mechanism for the electron transfer at biological/inorganic interface is investigated by integrating molecular modeling with electrochemical and spectroscopic measurements. For this purpose, a model system composed of OmcA, a typical OM protein, and the hexagonal tungsten trioxide (h-WO3 ) with good biocompatibility is selected. The interfacial electron transfer is dependent mainly on the special molecular configuration of OmcA and the microenvironment of the solvent exposed active center. Also, the apparent electron transfer rate can be tuned by site-directed mutagenesis at the axial ligand of the active center. Furthermore, the equilibrium state of the OmcA/h-WO3 systems suggests that their attachment is attributed to the limited number of residues. The electrochemical analysis of OmcA and its variants reveals that the wild type exhibits the fastest electron transfer rate, and the transient absorption spectroscopy further shows that the axial histidine plays an important role in the interfacial electron transfer process. This study provides a useful approach to promote the site-directed mutagenesis and nanomaterial design for bioelectrocatalytic applications.


Subject(s)
Heme , Shewanella , Heme/chemistry , Heme/metabolism , Electrons , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Shewanella/metabolism , Cytochromes/metabolism , Oxides
20.
Anal Chem ; 95(33): 12273-12283, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37556363

ABSTRACT

Excitation-emission matrix (EEM) spectroscopy has been proven to be an effective tool for offline fluorescence analysis. However, the pretreatment of EEM data requires an additional ultraviolet-visible (UV-vis) absorption spectrum for inner filter effect (IFE) correction. This complicates the instrument structure and increases the test flow, thus hindering the practical application of EEM in environmental online monitoring. In this work, Rayleigh scattering in EEM, which is often masked, is leveraged to address this challenge as Rayleigh scattering light itself passes through the sample and experiences absorption. We establish a translation-corrected estimation by the Rayleigh scattering (TCERS) method to estimate absorbance, not only enabling the IFE self-correction of EEM but also providing orthogonal spectroscopy information. TCERS is hierarchically tested in real solutions, simulated turbid liquids, and various natural water samples. Results indicate that the predicted UV-vis absorption spectra have a cosine similarity of over 0.95 with the actual spectra. When using the predicted spectra to correct the IFE of EEM, only about 0.005/1.440 bits of information entropy are lost and the absolute errors in EEM are negligible. The proposed method has the potential to streamline the design of fluorescence spectrometers, making it possible to miniaturize, optimize, and popularize these instruments for various practical applications such as environmental monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...