Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 474: 134790, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38850938

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC)/pancreatic cancer, is a highly aggressive malignancy with poor prognosis. Gemcitabine-based chemotherapy remains the cornerstone of PDAC treatment. Nonetheless, the development of resistance to gemcitabine among patients is a major factor contributing to unfavorable prognostic outcomes. The resistance exhibited by tumors is modulated by a constellation of factors such as genetic mutations, tumor microenvironment transforms, environmental contaminants exposure. Currently, comprehension of the relationship between environmental pollutants and tumor drug resistance remains inadequate. Our study found that PFOS/6:2 Cl-PFESA exposure increases resistance to gemcitabine in PDAC. Subsequent in vivo trials confirmed that exposure to PFOS/6:2 Cl-PFESA reduces gemcitabine's efficacy in suppressing PDAC, with the inhibition rate decreasing from 79.5 % to 56.7 %/38.7 %, respectively. Integrative multi-omics sequencing and molecular biology analyses have identified the upregulation of ribonucleotide reductase catalytic subunit M1 (RRM1) as a critical factor in gemcitabine resistance. Subsequent research has demonstrated that exposure to PFOS and 6:2 Cl-PFESA results in the upregulation of the RRM1 pathway, consequently enhancing chemotherapy resistance. Remarkably, the influence exerted by 6:2 Cl-PFESA exceeds that of PFOS. Despite 6:2 Cl-PFESA being regarded as a safer substitute for PFOS, its pronounced effect on chemotherapeutic resistance in PDAC necessitates a thorough evaluation of its potential risks related to gastrointestinal toxicity.

2.
Comput Biol Med ; 168: 107786, 2024 01.
Article in English | MEDLINE | ID: mdl-38048662

ABSTRACT

The distinction between Xanthogranulomatous Cholecystitis (XGC) and Gallbladder Carcinoma (GBC) is challenging due to their similar imaging features. This study aimed to differentiate between XGC and GBC using a deep learning nomogram model built from contrast enhanced computed tomography (CT) scans. 297 patients were included with confirmed XGC (94) and GBC (203) as the training and internal validation cohort from 2017 to 2021. The deep learning model Resnet-18 with Fourier transformation named FCovResnet18, shows most impressive potential in distinguishing XGC from GBC using 3-phase merged images. The accuracy, precision and area under the curve (AUC) of the model were then calculated. An additional cohort of 74 patients consisting of 22 XGC and 52 GBC patients was enrolled from two subsidiary hospitals as the external validation cohort. The accuracy, precision and AUC achieve 0.98, 0.99, 1.00 in the internal validation cohort and 0.89, 0.92, 0.92 in external validation cohort. A nomogram model combining clinical characteristics and deep learning prediction score showed improved predicting value. Altogether, FCovResnet18 nomogram has demonstrated its ability to effectively differentiate XGC from GBC preoperatively, which significantly aid surgeons in making informed and accurate surgical decisions for XGC and GBC patients.


Subject(s)
Deep Learning , Gallbladder Neoplasms , Humans , Gallbladder Neoplasms/diagnostic imaging , Gallbladder Neoplasms/surgery , Nomograms , Diagnosis, Differential
3.
Biochem Biophys Res Commun ; 640: 1-11, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36495604

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) was one of the most prevalent life-threatening cancers. Metastasis is the leading cause of cancer-related death in HCC. MiRNAs play essential roles in cancer metastasis. METHODS: Expression of miR-652-3p in HCC was assessed. Function experiments of miR-652-3p and trinucleotide repeat-containing gene 6A protein (TNRC6A) were performed both in vitro and in vivo. mRNA sequencing, PCR, and western blot were performed to verify the target genes and pathway of miR-652-3p. The lung metastasis and xenograft cancer model in nude mice was established to investigate the effects of the miR-652-3p and TRNC6A on tumor metastasis in vivo. The relationship between the expression of the miR-652-3p, TNRC6A and the prognosis of HCC patients was analyzed. RESULTS: Upregulated miR-652-3p was found in the tumor tissues of HCC, especially in metastatic HCC patients. Overexpression of miR-652-3p promoted and knockdown of miR-652-3p suppressed HCC metastasis both in vitro and in vivo. MiR-652-3p promoted HCC metastasis via regulating the EMT pathway. TNRC6A was identified as a direct target of miR-652-3p, and the knockdown of TNRC6A restored repressed EMT and HCC metastasis caused by the inhibition of miR-652-3p. Clinical results revealed that high expression of miR-652-3p and low expression of TNRC6A were positively correlated to shortened overall survival and disease-free survival in HCC patients. CONCLUSIONS: MiR-652-3p promotes EMT and HCC metastasis by inhibiting TNRC6A expression in HCC. MiR-652-3p and TNRC6A may serve as potential biomarkers to predict prognosis in HCC patients with metastasis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis
4.
Front Plant Sci ; 13: 843271, 2022.
Article in English | MEDLINE | ID: mdl-35386681

ABSTRACT

Ascorbate peroxidases (APXs) maintain cellular reactive oxygen species (ROS) homeostasis through their peroxidase activity. Here, we report that OsAPX1 also promotes ROS production such that a delicate cellular ROS homeostasis is achieved temporally after Magnaporthe oryzae infection. OsAPX1 specifically induces ROS production through increasing respiratory burst oxidase homologs (OsRBOHs) expression and can be inhibited by DPI, a ROS inhibitor. The time-course experiment data show that the simultaneous induction of OsAPX1 and OsRBOHs leads to ROS accumulation at an early stage; whereas a more durable expression of OsAPX1 leads to ROS scavenging at a later stage. By the temporal switching between ROS inducer and eliminator, OsAPX1 triggers an instant ROS burst upon M. oryzae infection and then a timely elimination of ROS toxicity. We find that OsAPX1 is under the control of the miR172a-OsIDS1 regulatory module. OsAPX1 also affects salicylic acid (SA) synthesis and signaling, which contribute to blast resistance. In conclusion, we show that OsAPX1 is a key factor that connects the upstream gene silencing and transcription regulatory routes with the downstream phytohormone and redox pathway, which provides an insight into the sophisticated regulatory network of rice innate immunity.

5.
J Cell Mol Med ; 26(9): 2646-2657, 2022 05.
Article in English | MEDLINE | ID: mdl-35355406

ABSTRACT

Acute myeloid leukaemia (AML) is a highly heterogeneous haematologic malignancy with poor prognosis. We previously showed synergistic antileukaemic interaction between exportin 1 (XPO1) inhibitor KPT-330 (Selinexor) and Bcl-2 inhibitor venetoclax (ABT-199) in preclinical models of AML, which was partially meditated by Mcl-1, although the full mechanism of action remains unknown. In this study, using real-time RT-PCR and Western blot analysis, we show that inhibition of XPO1 via KPT-330 or KPT-8602 (Eltanexor) decreases the mRNA and protein levels of c-Myc, CHK1, WEE1, RAD51 and RRM2. KPT-330 and KPT-8602 induce DNA damage, as determined by alkaline comet assay. In addition, we demonstrate that venetoclax enhances KPT-330- and KPT-8602-induced DNA damage, likely through inhibition of DNA damage repair. This study provides new insight into the molecular mechanism underlying the synergistic antileukaemic activity between venetoclax and XPO1 inhibitors against AML. Our data support the clinical evaluation of this promising combination therapy for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Antineoplastic Agents/pharmacology , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , DNA Damage , Humans , Karyopherins , Leukemia, Myeloid, Acute/genetics , Receptors, Cytoplasmic and Nuclear , Sulfonamides , Exportin 1 Protein
6.
J Agric Food Chem ; 69(3): 982-991, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33427450

ABSTRACT

Lipopolysaccharide (LPS)-induced liver injury is the main factor in acute liver failure. The current study aims to investigate the protection of limonin, an antioxidant compound from citrus fruit, against LPS-induced liver toxicity and elucidate the potential mechanisms. We found that limonin elevated cell viability and reduced LDH release in LPS-treated HepG2 cells. Limonin also inhibited LPS-induced pyroptosis by inhibiting membrane rupture, reducing ROS generation, and decreasing gasdermin D activation. Moreover, limonin inhibited the formation of a NOD-like receptor protein 3 (NLRP3)/Apoptosis-associated speck-like protein containing a CARD (ASC) complex by reducing the related protein expression and the colocalization cytosolic of NLRP3 and caspase-1 and then suppressed IL-1ß maturation. Ultimately, we established LPS-induced hepatotoxicity in vivo by using C57BL/6 mice administrated LPS (10 mg/kg) intraperitoneally and limonin (50 and 100 mg/kg) orally. We found that limonin dereased the serum ALT and AST activity and LDH release and increased the hepatic GSH amount in LPS-treated mice. Additionally, the liver histological evaluation revealed that limonin protects against LPS-induced liver damage. We further demonstrated that limonin ameliorated LPS-induced hepatotoxicity by inhibiting pyroptosis via the NLRP3/gasdermin D signaling pathway. In summary, this study uncovered the mechanism whereby limonin mitigated LPS-induced hepatotoxicity and documented that limonin might be a promising candidate drug for LPS-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Intracellular Signaling Peptides and Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/drug effects , Animals , Caspase 1/genetics , Caspase 1/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Limonins , Lipopolysaccharides/adverse effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphate-Binding Proteins/genetics
7.
Onco Targets Ther ; 13: 11935-11946, 2020.
Article in English | MEDLINE | ID: mdl-33244239

ABSTRACT

BACKGROUND: Mammalian Ste20-like kinase 4 (MST4), also known as serine/threonine kinase 26 (STK26), promotes development of several cancers and is found to be highly expressed in the placenta. However, in choriocarcinoma that originated from the placenta, the expression of MST4 was undetermined and its mechanism was unknown. In this study, the expression of MST4 in choriocarcinoma as well as the underlying mechanism was explored. PURPOSE: To detect the expression of MST4 in patient samples and mechanism of mediating EMT by MST4 in choriocarcinoma. PATIENTS AND METHODS: The metastatic lesions of choriocarcinoma (n=17) and volunteer villus (n=17) were collected to determine MST4 expression using immunohistochemistry and H&E staining. We use siRNA and lentiviral vector to knockdown MST4 and use plasmid to overexpress MST4 in choriocarcinoma. Then, we apply real-time polymerase chain reaction (RT-PCR), Western blot assay and immunofluorescence assay to detect target protein expressions. Cell invasion and migration and cell proliferation were detected by transwell assay and wound healing assay and CCK-8 and cell colony formation. RESULTS: MST4 is lowly expressed in the metastatic lesions of choriocarcinoma patients when compared with normal villus. Knockdown of MST4 activated epithelial-mesenchymal transition (EMT) process, significantly increasing the ability of invasion and migration in choriocarcinoma cell lines (JAR and JEG-3). In contrast, the EMT process was restrained in choriocarcinoma cell lines with overexpressed MST4. Meanwhile, genome-wide gene expression array, Western blot and ELISA revealed that tumor growth factor-beta 1 (TGF-ß1) has significantly increased. The EMT process and metastatic prompting biofunction were reversed after using TGF-ß1 inhibitor (LY364947) in the choriocarcinoma cell lines with MST4 knockdown. CONCLUSION: Our studies demonstrated that MST4 was lowly expressed in patient samples. Additionally, JAR and JEG-3 increase cell invasion and migration ability while there is no influence on cell proliferation with MST4 knockdown. Conversely, the metastatic ability of JAR and JEG-3 was decreased with overexpressed MST4. Moreover, TGF-ß1 was a key factor after MST4 knockdown. In conclusion, MST4 affects choriocarcinoma EMT by mediating TGF-ß1 expression.

8.
Oncogene ; 39(42): 6529-6543, 2020 10.
Article in English | MEDLINE | ID: mdl-32917956

ABSTRACT

Exosomes play an important role in intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). However, cellular communication between heterogeneous HCC cells with different metastatic potentials and the resultant cancer progression are not fully understood in HCC. Here, HCC cells with high-metastatic capacity (97hm and Huhm) were constructed by continually exerting selective pressure on primary HCC cells (MHCC-97H and Huh7). Through performing exosomal miRNA sequencing in HCC cells with different metastatic potentials (MHCC-97H and 97hm), many significantly different miRNA candidates were found. Among these miRNAs, miR-92a-3p was the most abundant miRNA in the exosomes of highly metastatic HCC cells. Exosomal miR92a-3p was also found enriched in the plasma of HCC patient-derived xenograft mice (PDX) model with high-metastatic potential. Exosomal miR-92a-3p promotes epithelial-mesenchymal transition (EMT) in recipient cancer cells via targeting PTEN and regulating its downstream Akt/Snail signaling. Furthermore, through mRNA sequencing in HCC cells with different metastatic potentials and predicting potential transcription factors of miR92a-3p, upregulated transcript factors E2F1 and c-Myc were found in high-metastatic HCC cells promote the expression of cellular and exosomal miR-92a-3p in HCC by directly binding the promoter of its host gene, miR17HG. Clinical data showed that a high plasma exosomal miR92a-3p level was correlated with shortened overall survival and disease-free survival, indicating poor prognosis in HCC patients. In conclusion, hepatoma-derived exosomal miR92a-3p plays a critical role in the EMT progression and promoting metastasis by inhibiting PTEN and activating Akt/Snail signaling. Exosomal miR92a-3p is a potential predictive biomarker for HCC metastasis, and this may provoke the development of novel therapeutic and preventing strategies against metastasis of HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Exosomes/metabolism , Liver Neoplasms/genetics , MicroRNAs/metabolism , PTEN Phosphohydrolase/genetics , Animals , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/secondary , Cell Line, Tumor , Cell Movement/genetics , Disease-Free Survival , E2F1 Transcription Factor/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/blood , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Mice , MicroRNAs/genetics , Middle Aged , Neoplasm Metastasis/genetics , PTEN Phosphohydrolase/metabolism , Prognosis , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/genetics , Up-Regulation , Xenograft Model Antitumor Assays
9.
J Mater Chem B ; 7(42): 6476-6487, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31465082

ABSTRACT

Liver cancer is a kind of lethal and aggressive malignant neoplasm with a high rate of relapse and metastasis after therapy. An important cause for the relapse and metastasis is the existence of liver cancer stem cells (CSCs), which have high resistance to chemotherapy and high tumorigenic potential. Therefore, it is crucial to develop new methods to eradicate CSCs in tumors. Herein, we develop a photodynamic therapy (PDT) that features bimodal metallacage-loaded nanoparticles (MNPs) for integrated chemotherapy. This platform achieves chemo-photodynamic combinational therapy. Organoplatinum(ii) metallacage-loaded nanoparticles show excellent ability to kill liver CSCs, decreasing their mobility and sphenoid formation ability under near-infrared laser irradiation. Importantly, MNPs can successfully penetrate into 3D tumor spheroids, which display higher drug resistance compared to traditional 2D cultured cells. This destroys CSCs and prevents subsequent tumor formation in vivo. With the excellent combinational therapeutic results in hand, the working mechanisms of MNPs were then studied. MNPs under NIR light irradiation can generate reactive oxygen species (ROS), resulting in damage of mitochondrial membrane and subsequent cell apoptosis with chemotherapeutic platinum. This study proves the great potential of MNPs for combinational cancer therapy, providing a new insight for the next generation of nanomedicines.


Subject(s)
Antineoplastic Agents/therapeutic use , Liver Neoplasms/drug therapy , Metal Nanoparticles/therapeutic use , Neoplastic Stem Cells/drug effects , Photosensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/radiation effects , Coordination Complexes/therapeutic use , Humans , Infrared Rays , Liver/pathology , Male , Membrane Potential, Mitochondrial/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Mice, Nude , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Platinum/chemistry , Platinum/radiation effects , Porphyrins/chemistry , Porphyrins/radiation effects , Porphyrins/therapeutic use , Reactive Oxygen Species/metabolism , Spheroids, Cellular/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...