Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Clin Pharmacol Toxicol ; 114(4): 352-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24373304

ABSTRACT

Lidocaine has been reported to induce apoptosis on rabbit corneal endothelial cells. However, the apoptotic effect and exact mechanism involved in cytotoxicity of lidocaine are not well-established in human corneal endothelial (HCE) cells. In this study, we investigated the apoptosis-inducing effect of lidocaine on HCE cells in vitro. After HCE cells were treated with lidocaine at concentrations of 0.15625-10.0 g/l, the morphology and ultrastructure of the cells were observed by inverted light microscope and transmission electron microscope (TEM). Cell viability was measured by MTT assay, and the apoptotic ratio was evaluated with flow cytometry and fluorescent microscopic counting after FITC-Annexin V/PI and AO/EB staining. DNA fragmentation was detected by electrophoresis, and the activation of caspases was evaluated by ELISA. In addition, changes in mitochondrial membrane potential were determined by JC-1 staining. Results suggest that lidocaine above 1.25 g/l reduced cellular viability and triggered apoptosis in HCE cells in a time- and dose-dependent manner. Diminishment of ΔΨm and the activation of caspases indicate that lidocaine-induced apoptosis was caspase dependent and may be related to mitochondrial pathway.


Subject(s)
Cornea/drug effects , Endothelial Cells/drug effects , Lidocaine/toxicity , Apoptosis/drug effects , Benzimidazoles/metabolism , Carbocyanines/metabolism , Cell Survival/drug effects , Cells, Cultured , Cornea/cytology , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Microscopy, Electron, Transmission , Mitochondria/drug effects
2.
Int J Ophthalmol ; 6(6): 766-71, 2013.
Article in English | MEDLINE | ID: mdl-24392322

ABSTRACT

AIM: To demonstrate the apoptosis-inducing effect of lidocaine on human corneal stromal (HCS) cells in vitro, and provide experimental basis for safety anesthetic usage in clinic of ophthalmology. METHODS: In vitro cultured HCS cells were treated with lidocaine at different doses and times, and their morphology was monitored successively with inverted phase contrast microscopy. The membrane permeability of them was detected by acridine orange/ethidium bromide (AO/EB) double staining. The DNA fragmentation of them was examined by agarose gel electrophoresis, and their ultrastructure was observed by transmission electron microscopy (TEM), respectively. RESULTS: Exposure to lidocaine at doses from 0.3125g/L to 20g/L induced morphological changes of HCS cells such as cytoplasmic vacuolation, cellular shrinkage, and turning round, and elevated membrane permeability of these cells in AO/EB staining. The change of morphology and membrane permeability was dose- and time-dependent, while lidocaine at dose below 0.15625g/L could not induce these changes. Furthermore, lidocaine induced DNA fragmentation and ultrastructural changes such as cytoplasmic vacuolation, structural disorganization, chromatin condensation, and apoptotic body appearance of the cells. CONCLUSION: Lidocaine has significant cytotoxicity on human corneal stromal cells in vitro in a dose- and time-dependent manner by inducing apoptosis of these cells. The established experimental model and findings based on this model here help provide new insight into the apoptosis-inducing effect of local anesthetics in eye clinic.

3.
Int J Ophthalmol ; 5(4): 424-9, 2012.
Article in English | MEDLINE | ID: mdl-22937499

ABSTRACT

AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed with DiI-labeled untransfected HCEP cells and denuded amniotic membrane (dAM) in air-liquid interface culture, and their morphology and structure were characterized by hematoxylin-eosin (HE) staining of paraffin-sections, immunohistochemistry and electron microscopy. LSCD models were established by mechanical and alcohol treatment of the left eyes of New Zealand white rabbits, and their eyes were transplanted with TE-HCEPs with dAM surface outside by lamellar keratoplasty (LKP). Corneal transparency, neovascularization, thickness, and epithelial integrality of both traumatic and post transplantation eyes were checked once a week by slit-lamp corneal microscopy, a corneal pachymeter, and periodic acid-Schiff (PAS) staining. At day 120 post surgery, the rabbits in each group were sacrificed and their corneas were examined by DiI label observation, HE staining, immunohistochemistry and electron microscopy. RESULTS: After cultured for 5 days on dAM, HCEP cells, maintaining keratin 3 expression, reconstructed a 6-7 layer TE-HCEP with normal morphology and structure. The traumatic rabbit corneas, entirely opaque, conjunctivalized and with invaded blood vessels, were used as LSCD models for TE-HCEP transplantation. After transplantation, obvious edema was not found in TE-HCEP-transplanted corneas which became more and more transparent, the invaded blood vessels reduced gradually throughout the monitoring period. The corneas decreased to normal thickness on day 25, while those of dAM eyes were over 575µm in thickness during the monitoring period. A 4-5 layer of epithelium consisting of TE-HCEP originated cells attached tightly to the anterior surface of stroma was reconstructed 120 days after TE-HCEP transplantation, which was similar to the normal control eye in morphology and structure. In contrast, intense corneal edema, turbid, invaded blood vessels were found in dAM eyes, and no multilayer epithelium was found but only a few scattered conjunctiva-like cells appeared. CONCLUSION: The TE-HCEP, with similar morphology and structure to those of innate HCEP, could reconstruct a multilayer corneal epithelium with normal functions in restoring corneal transparency and thickness of LSCD rabbits after transplantation. It may be a promising HCEP equivalent for clinical therapy of corneal epithelial disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...