Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; : e202401097, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760978

ABSTRACT

Two uncommon epoxyquinols, pyrrolocytosporin A (1) and cytosporin E2 (2), along with the known cytosporin Y1 (3), were isolated from the solid defined medium of the Arctic-derived fungus Eutypella sp. D-1. Their structures were established through comprehensive analyses of spectroscopic and electronic circular dichroism data. Structurally, compound 1 represented the first nitrogen-containing epoxyquinol characterized by a pyrrole fused cytosporin framework, while compound 2 contained an uncommon cyclic carbonate functionality. The antibacterial, immunosuppressive, anti-inflammatory, and cytotoxic activities of all compounds were evaluated. Among the three metabolites, only compound 1 exhibited inhibitory effects on nitric oxide production induced by lipopolysaccharide with an IC50 value of 6.55 µM. Additionally, only compound 2 displayed inhibitory activity against ConA-induced T-cell proliferation with an IC50 value of 9.85 µM.

2.
J Nat Prod ; 87(5): 1426-1440, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38690764

ABSTRACT

With the advancement of bioinformatics, the integration of genome mining with efficient separation technology enables the discovery of a greater number of novel bioactive compounds. The deletion of the key gene responsible for triterpene cyclase biosynthesis in the polar strain Eutypella sp. D-1 instigated metabolic shunting, resulting in the activation of dormant genes and the subsequent production of detectable, new compounds. Fifteen sesquiterpenes were isolated from the mutant strain, with eight being new compounds. The structural elucidation of these compounds was obtained through a combination of HRESIMS, NMR spectroscopy, and ECD calculations, revealing six distinct skeleton types. Compound 7 possessed a unique skeleton of 5/10 macrocyclic ether structure. Based on the gene functions and newly acquired secondary metabolites, the metabolic shunting pathway in the mutant strain was inferred. Compounds 6, 8, 11, 14, and 15 exhibited anti-inflammatory effects without cytotoxicity through the release of nitric oxide from lipopolysaccharide-stimulated RAW264.7 cells. Notably, acorane-type sesquiterpene 8 inhibited nitric oxide production and modulated the MAPK and NLRP3/caspase-1 signaling pathways. Compound 8 also alleviated the CuSO4-induced systemic neurological inflammation symptoms in a transgenic fluorescent zebrafish model.


Subject(s)
Anti-Inflammatory Agents , Sesquiterpenes , Zebrafish , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Molecular Structure , Nitric Oxide/biosynthesis , Lipopolysaccharides/pharmacology
3.
Front Microbiol ; 15: 1349151, 2024.
Article in English | MEDLINE | ID: mdl-38333587

ABSTRACT

Eight new 12,8-eudesmanolide sesquiterpenes, eutypellaolides A-H (1-8), and two new eudesmane-type sesquiterpenes, eutypellaolides I-J (9-10), along with four known 12,8-eudesmanolide compounds 11-14, were isolated from the culture extract of the polar fungus Eutypella sp. D-1 by one strain many compounds (OSMAC) approach. The structures of these compounds were determined through comprehensive spectroscopic data and experimental and calculated ECD analysis. Antibacterial, immunosuppressive, and PTP1B inhibition activities of these compounds were evaluated. Compounds 1 and 11 exhibited strong inhibitory activities against Bacillus subtilis and Staphylococcus aureus, with each showing an MIC value of 2 µg/mL. Compound 9 displayed weak immunosuppressive activity against ConA-induced T-cell proliferation with an inhibitory rate of 61.7% at a concentration of 19.8 µM. Compounds 5, 11, and 14 exhibited weak PTP1B inhibition activities with IC50 values of 44.8, 43.2, and 49.5 µM, respectively.

4.
Mar Drugs ; 21(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37888442

ABSTRACT

Eight new scalarane sesterterpenes, phyllofenones F-M (1-8), together with two known analogues, carteriofenones B and A (9-10), were isolated from the marine sponge Phyllospongia foliascens collected from the South China Sea. The structures of these compounds were determined based on extensive spectroscopic and quantum chemical calculation analysis. The antibacterial and cytotoxic activity of these compounds was evaluated. Among them, only compounds 4 and 6 displayed weak inhibitory activity against Staphylococcus aureus and Escherichia coli, with MIC values of 16 µg/mL and 8 µg/mL, respectively. Compounds 1-10 exhibited cytotoxic activity against the HeLa, HCT-116, H460, and SW1990 cancer cell lines, with IC50 values ranging from 3.4 to 19.8 µM.


Subject(s)
Antineoplastic Agents , Porifera , Animals , Humans , Sesterterpenes/chemistry , Porifera/chemistry , Magnetic Resonance Spectroscopy , Antineoplastic Agents/chemistry , HeLa Cells , Escherichia coli , Molecular Structure
5.
Mar Drugs ; 21(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37504913

ABSTRACT

A chemical investigation of the Arctic-derived fungus Eutypella sp. D-1 based on the OSMAC (one strain many compounds) approach resulted in the isolation of five cytosporin polyketides (compounds 1-3 and 11-12) from rice medium and eight cytosporins (compounds 2 and 4-11) from solid defined medium. The structures of the seven new compounds, eutypelleudesmane A (1), cytosporin Y (2), cytosporin Z (3), cytosporin Y1 (4), cytosporin Y2 (5), cytosporin Y3 (6), and cytosporin E1 (7), were elucidated by analyzing their detailed spectroscopic data. Structurally, cytosporin Y1 (4) may be a key intermediate in the biosynthesis of the isolated cytosporins, rather than an end product. Compound 1 contained a unique skeleton formed by the ester linkage of two moieties, cytosporin F (12) and the eudesmane-type sesquiterpene dihydroalanto glycol. Additionally, the occurrence of cyclic carbonate moieties in compounds 6 and 7 was found to be rare in nature. The antibacterial, immunosuppressive, and cytotoxic activities of all compounds derived from Eutypella sp. D-1 were evaluated. Unfortunately, only compounds 3, 6, 8, and 10-11 displayed immunosuppressive activity, with inhibitory rates of 62.9%, 59.5%, 67.8%, 55.8%, and 68.7%, respectively, at a concentration of 5 µg/mL.


Subject(s)
Antineoplastic Agents , Sesquiterpenes , Xylariales , Molecular Structure , Xylariales/chemistry , Antineoplastic Agents/pharmacology , Anti-Bacterial Agents/pharmacology
6.
J Nat Prod ; 86(7): 1754-1760, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37335557

ABSTRACT

Phyllospongianes A-E (1-5), five new scalarane derivatives featuring an unprecedented 6/6/6/5 tetracyclic dinorscalarane scaffold, along with the known probable biogenetic precursor, 12-deacetylscalaradial (6), were isolated from the marine sponge Phyllospongia foliascens. The structures of the isolated compounds were determined by analysis of spectroscopic data and electronic circular dichroism experiments. Compounds 1-5 are the first 6/6/6/5 tetracyclic scalarane derivatives to be reported within the scalarane family. Compounds 1, 2, and 4 exhibited antibacterial activity against Vibrio vulnificus, Vibrio parahemolyticus, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa with MIC values ranging from 1 to 8 µg/mL. Furthermore, compound 3 exhibited significant cytotoxic activity on MDA-MB-231, HepG2, C4-2-ENZ, MCF-7, H460, and HT-29 cancer cell lines with IC50 values in the range between 0.7 and 13.2 µM.


Subject(s)
Antineoplastic Agents , Porifera , Animals , Sesterterpenes/chemistry , Porifera/chemistry , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis , Escherichia coli , Molecular Structure
7.
Front Microbiol ; 13: 769008, 2022.
Article in English | MEDLINE | ID: mdl-35464961

ABSTRACT

Arctic-derived fungus Eutypella sp. D-1 has attracted wide attention due to its huge ability to synthesize secondary metabolites. However, current studies only focus on stimulating its production of new secondary metabolites by OSMAC strategies, and the relationship between secondary metabolites and biosynthetic gene clusters (BGCs) has not been explored. In this study, the preparation and regeneration conditions of Eutypella sp. D-1 protoplasts were explored to lay a foundation for the study of genetic transformation of this fungus. Orthogonal experiment showed that the optimal preparation conditions were 0.75 M NaCl, 20 g/L of lysing enzyme, and 20 g/L of driselase, 28°C for 6 h. The maximum yield of Eutypella sp. D-1 protoplasts could reach 6.15 × 106 cells·ml-1, and the concentration of osmotic stabilizer NaCl was the most important factor for Eutypella sp. D-1 protoplasts. The results of FDA staining showed that the prepared protoplasts had good activity. Besides, the best protoplasts regeneration medium was YEPS, whose maximum regeneration rate is 36%. The mediums with nitrogen sources, such as SR and RM, also had good effects on the Eutypella sp. D-1 protoplast regeneration, indicating that nitrogen sources played an important role on the Eutypella sp. D-1 protoplast regeneration. Subsequent transformation experiments showed that hygromycin resistance genes (hrg) could be successfully transferred into the genome of Eutypella sp. D-1, indicating that the prepared protoplasts could meet the needs of subsequent gene manipulation and research. This study lays a foundation for the genetic transformation of Eutypella sp. D-1.

8.
Chem Biodivers ; 19(5): e202200049, 2022 May.
Article in English | MEDLINE | ID: mdl-35393745

ABSTRACT

Scalarane-type sesterterpenoids have received considerable attention in the scientific literature due to their diverse carbon skeletons and various biological activities and pharmacological properties. Among all these derivatives are commonly isolated from marine sponges and are occasionally derived from shell-less mollusks, such as nudibranchs. This review comprehensively discusses the marine-derived natural sources that give rise to these scalarane-type sesterterpenoids, providing the names, their chemical structures, biological properties, with emphasis on anticancer activity and literature references related to these metabolites. A critical summary of the 221 compounds generated from January 2010 up to December 2021 for their potential as anticancer agents is presented.


Subject(s)
Antineoplastic Agents , Biological Products , Porifera , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aquatic Organisms , Biological Products/chemistry , Biological Products/pharmacology , Porifera/chemistry , Sesterterpenes/chemistry , Sesterterpenes/pharmacology
9.
J Asian Nat Prod Res ; 24(3): 252-258, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33892608

ABSTRACT

Two new polyketides, palitantins B and C (1 and 2), along with one known related compound (+)-palitantin (3) were obtained from the culture of the Antarctic fungus Geomyces sp. 3-1. The structures of the new compounds were elucidated by detailed analysis of HRESIMS, NMR, CD, and ECD data. Compound 3 showed potent PTP1B inhibitory activity with an IC50 value of 7.9 µM (ursolic acid as positive control, IC50 = 8.3 µM).


Subject(s)
Ascomycota , Polyketides , Cyclohexanols , Cyclohexanones , Molecular Structure , Polyketides/pharmacology
10.
J Thorac Dis ; 13(10): 5996-6011, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34795947

ABSTRACT

BACKGROUND: the incidence of distant metastases is over 30% in advanced non-small cell lung cancer (NSCLC) patients. In particular, bone is reported as the most common site of distant metastasis NSCLC. Bone metastases (BM) have a consequence of serious skeletal-related events (SREs) leading to the reduced overall survival (OS) and quality of life of NSCLC patients. Inhibition of osteolytic lesions and regulation crosstalk between metastatic NSCLC cells and bone microenvironment are the key to treating NSCLC. Due to the lack of effective treatments against NSCLC with bone metastasis, screening and identification of novel agents against both NSCLC and osteoclast effects are critically needed. METHODS: We assessed the effects of Aspernolide A (AA) on osteolysis and RANKL-induced pathways activation, bone resorption and F-actin ring formation in vitro. We evaluated AA effects on NCI-H460 and A549 cells in vitro through wound healing assay and transwell assay. Furthermore, we assessed the effects of AA in vivo using an intratibial xenograft NSCLC nude mouse model, followed by micro-computed tomography(micro-CT) and TRAcP staining. RESULTS: in our study, AA, a soft coral-derived agent, was shown to inhibit osteoclastogenesis via suppression of nuclear factor (NF)-κBp65, ERK, AKT and P38 phosphorylation, and then suppress the RANKL-induced c-Fos and NFATc1 activities in bone marrow macrophages (BMMs). Furthermore, AA reduced the migration and invasion of NSCLC cells through diminishing the expression of MMP9, MMP7, and N-cadherin proteins and upregulating E-cadherin expression in vitro, as well as inhibited the phosphorylation of ERK, AKT, P38, and NF-κBp65. It was also demonstrated that administration of AA could help prevent NSCLC-induced bone destruction by attenuating NSCLC development and osteoclast activity in vivo. CONCLUSIONS: collectively, these findings indicated that Aspernolide A is a potential candidate for NSCLC-induced osteolytic bone destruction.

11.
Molecules ; 26(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435380

ABSTRACT

Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate the intracellular molecular target and underlying mechanism. As shown, LH exhibited anticancer activity in human pancreatic cancer cells by promoting cell apoptosis. Mechanistic studies suggested that LH-induced reactive oxygen species (ROS) accumulation was responsible for apoptosis as antioxidant N-acetylcysteine (NAC) and antioxidant enzyme superoxide dismutase (SOD) antagonized the inhibitory effect of LH. Zymologic testing demonstrated that LH inhibited Trx system but had little effect on the glutathione reductase and glutaredoxin. Mass spectrometry (MS) analysis revealed that the mechanism of action was based on the direct conjugation of LH to the Cys32/Cys35 residue of Trx1 and Sec498 of TrxR, leading to a decrease in the cellular level of glutathione (GSH) and activation of downstream ASK1/JNK signaling pathway. Taken together, our findings revealed LH was a marine derived inhibitor of Trx system and an anticancer candidate.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Diterpenes/pharmacology , Pancreatic Neoplasms/drug therapy , Reactive Oxygen Species/antagonists & inhibitors , Thioredoxins/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Ascomycota/chemistry , Biological Products/chemistry , Biological Products/isolation & purification , Cell Proliferation/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Drug Screening Assays, Antitumor , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Tumor Cells, Cultured
12.
J Asian Nat Prod Res ; 23(1): 33-38, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31829036

ABSTRACT

Two new 1,3-benzodioxole derivatives, leucandioxoles A and B (1-2), together with two known related compounds (3-4), have been isolated from the South China Sea sponge Leucandra sp. The structures of all compounds were clearly elucidated on the basis of spectroscopic analyses and compared with the literatures. The cytotoxicity against A549, Hep G2, MDA-MB-231, and HeLa cell lines of 1-4 were evaluated. Only compound 1 exhibited moderate activity against MDA-MB-231 cells with the IC50 value of 7.98 ± 0.74 µM.


Subject(s)
Antineoplastic Agents , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , China , Dioxoles , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Structure
13.
Nat Prod Res ; 35(10): 1620-1626, 2021 May.
Article in English | MEDLINE | ID: mdl-31232106

ABSTRACT

Three new sesquiterpene quinones/hydroquinones, 20-demethoxy-20-isopentylaminodactyloquinone D (1), 20-demethoxy-20-isobutylaminodactyloquinone D (2), and 19-methoxy-dictyoceratin-A (3), and five known related compounds (4-8) were isolated from the marine sponge Dactylospongia elegans. Their structures were elucidated by spectroscopic analysis, ECD calculation, single-crystal X-ray diffraction, and comparison with the literature. Compounds 3 and 5-8 exhibited activities against the human cancer cell lines DU145, SW1990, Huh7, and PANC-1 with IC50 values ranging from 2.33 to 37.85 µM.


Subject(s)
Aquatic Organisms/chemistry , Porifera/chemistry , Terpenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Terpenes/chemistry
14.
Mar Drugs ; 18(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32993037

ABSTRACT

Chemical investigation on a marine sponge, Dactylospongia elegans, yielded five new γ-oxygenated butenolide sesterterpene derivatives, dactylospenes A-E (1-5), as well as two known biosynthetically related compounds, luffariellolide (6) and furospinosulin B (7). The structures of these compounds were elucidated on the basis of their spectroscopic data, experimental and calculated electronic circular dichroism (ECD) analysis, as well as comparison of the NMR data with those of known analogs. These metabolites are the first γ-oxygenated butenolide sesterterpenes to be reported from this genus. These compounds were evaluated in antimicrobial, anti-inflammatory, and cytotoxic assays. Only compounds 1, 3, and 6 exhibited moderate cytotoxicity against DU145, SW1990, Huh7, and PANC-1 cancer cell lines with IC50 values in the range of 2.11-13.35 µM. Furthermore, compound 2, without cytotoxicity, exhibited significant inhibitory effects (inhibitory rate 77.5%) on nitric oxide production induced by lipopolysaccharide at 10 µM.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Porifera/metabolism , Sesterterpenes/isolation & purification , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Lipopolysaccharides , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Terpenes/isolation & purification
15.
Chem Biodivers ; 17(4): e2000074, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32110847

ABSTRACT

Two new quinoline alkaloids, aaptolines A and B, were isolated from the marine sponge Aaptos aaptos. Their structures were determined by HR-ESI-MS data, NMR analysis, and X-ray crystallography. Structurally, aaptoline A is characterized as having a quinoline skeleton fused with a 1,4-dioxane motif at the C(7)-C(8) position, whereas aaptoline B possessed an intriguing 1H-pyrrolo[2,3-g]quinoline moiety. The cytotoxic assay of these compounds showed no cytotoxicity towards HepG2, A549, and PC9 cancer cell lines and had IC50 values greater than 20 µm.


Subject(s)
Alkaloids/chemistry , Antineoplastic Agents/chemistry , Porifera/chemistry , Quinolines/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Conformation , Porifera/metabolism , Spectrometry, Mass, Electrospray Ionization
16.
J Nat Prod ; 83(3): 617-625, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31916778

ABSTRACT

A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (1), was isolated from laboratory cultures of a marine Chlorophyte, Derbesia sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth. The planar structure of pagoamide A (1) was characterized by detailed 1D and 2D NMR experiments along with MS and UV analysis. The absolute configurations of its amino acid residues were determined by advanced Marfey's analysis following chemical hydrolysis and hydrazinolysis reactions. Two of the residues in pagoamide A (1), phenylalanine and serine, each occurred twice in the molecule, once in the d- and once in the l-configuration. The biosynthetic origin of pagoamide A (1) was considered in light of other natural products investigations with coenocytic green algae.


Subject(s)
Biological Products/chemistry , Chlorophyta/chemistry , Depsipeptides/chemistry , American Samoa , Amino Acids , Animals , Biological Products/isolation & purification , Depsipeptides/isolation & purification , Female , Molecular Structure , Rats , Tandem Mass Spectrometry
17.
J Nat Prod ; 82(11): 3089-3095, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31702148

ABSTRACT

The Arctic fungus Eutypella sp. D-1, previously found to produce a variety of cytotoxic cyclopropyl-fused and cyclobutyl-fused pimarane diterpenoids when grown in the defined medium, was induced to produce unusual metabolites by growing on solid rice medium. A chemical investigation on the rice medium extract led to the isolation of four new meroterpenoids, eutypellacytosporins A-D (1-4), along with the known biogenetically related compound cytosporin D (5). The structures of the new compounds were elucidated by their detailed spectroscopic analysis and modified Mosher's method. Compounds 1-4 may be formed by the 12,32-ester linkage of two moieties, cytosporin D (5) and decipienolide A or B. All isolated compounds, except 5, showed weak cytotoxicity against DU145, SW1990, Huh7, and PANC-1 cell lines with IC50 values ranging from 4.9 to 17.1 µM.


Subject(s)
Terpenes/chemistry , Terpenes/pharmacology , Xylariales/chemistry , Anti-Bacterial Agents , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Arctic Regions , Cell Line, Tumor , Culture Media , Drug Screening Assays, Antitumor , Fermentation , Humans , Microbial Sensitivity Tests , Molecular Structure
18.
Curr Top Med Chem ; 19(31): 2868-2918, 2019.
Article in English | MEDLINE | ID: mdl-31724505

ABSTRACT

Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.


Subject(s)
Actinobacteria/chemistry , Anti-Bacterial Agents/metabolism , Antineoplastic Agents/metabolism , Antiviral Agents/metabolism , Biological Products/metabolism , Actinobacteria/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Humans
19.
J Nat Prod ; 82(9): 2608-2619, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31468974

ABSTRACT

Nine new linear lipopeptides, microcolins E-M (1-9), together with four known related compounds, microcolins A-D (10-13), were isolated from the marine cyanobacterium Moorea producens using bioassay-guided and LC-MS/MS molecular networking approaches. Catalytic hydrogenation of microcolins A-D (10-13) yielded two known compounds, 3,4-dihydromicrocolins A and B (14, 15), and two new derivatives, 3,4-dihydromicrocolins C and D (16, 17), respectively. The structures of these new compounds were determined by a combination of spectroscopic and advanced Marfey's analysis. Structurally unusual amino acid units, 4-methyl-2-(methylamino)pent-3-enoic (Mpe) acid and 2-amino-4-methylhexanoic acid (N-Me-homoisoleucine), in compounds 1-3 and 8, respectively, are rare residues in naturally occurring peptides. These metabolites showed significant cytotoxic activity against H-460 human lung cancer cells with IC50 values ranging from 6 nM to 5.0 µM. The variations in structure and attendant biological activities provided fresh insights concerning structure-activity relationships for the microcolin class of lipopeptides.


Subject(s)
Antineoplastic Agents/isolation & purification , Cyanobacteria/chemistry , Lipopeptides/isolation & purification , Marine Biology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Lipopeptides/chemistry , Lipopeptides/pharmacology
20.
J Asian Nat Prod Res ; 21(10): 961-969, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29911892

ABSTRACT

Two new cyclohexanone derivatives, nectriatones A-B (1-2), and one new natural product, nectriatone C (3), together with three known phenolic sesquiterpene derivatives (4-6), were isolated from the culture of Nectria sp. B-13 obtained from high-latitude soil of the Arctic. The structures of all compounds were unambiguously elucidated by extensive spectroscopic analysis, as well as by comparison with the literature. These compounds were evaluated in cytotoxic and antibacterial activities. Compounds 1-6 showed cytotoxicities against SW1990, HCT-116, MCF-7, and K562 cells, with IC50 values in the range of 0.43 to 42.64 µM. Only compound 4 exhibited antibacterial activity against Escherichisa coli, Bacillus subtilis, and Staphylococcus aureus (MIC 4.0, 2.0, and 4.0 µg/ml, respectively).


Subject(s)
Nectria/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antibiotics, Antineoplastic/isolation & purification , Antibiotics, Antineoplastic/pharmacology , Arctic Regions , Bacteria/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Sesquiterpenes/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...