Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775169

ABSTRACT

OBJECTIVE: Maladaptive personality traits have been implicated in romantic relationship dissatisfaction, but the etiology of those links and the degree to which they extend to other types of relationships are unclear. The purpose of this study was to examine associations between maladaptive personality traits and satisfaction in various relationships using a co-twin control design to identify potential environmental contributions. METHOD: The sample consisted of 1340 older adult twin participants from the Minnesota Twin Registry (Mage = 70.3) that completed the Personality Inventory for DSM-5 Faceted Brief Form and Network of Relationships Inventory (Revised for Older Adults). RESULTS: Several maladaptive personality traits were phenotypically associated with relationship dissatisfaction, with detachment and negative affect having the largest effects. Further, within twin pair differences in detachment and negative affect were associated with greater relationship dissatisfaction, suggesting that observed associations were mediated partly by the unique environment, not solely the result of genetic and familial confounding. Both phenotypic and co-twin associations were strongest overall in the romantic partner relationship. CONCLUSION: These findings support the notion that maladaptive personality traits are implicated in interpersonal dysfunction across multiple domains.

2.
ACS Cent Sci ; 9(12): 2257-2267, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38161364

ABSTRACT

A pervasive challenge in drug design is determining how to expand a ligand-a small molecule that binds to a target biomolecule-in order to improve various properties of the ligand. Adding single chemical groups, known as fragments, is important for lead optimization tasks, and adding multiple fragments is critical for fragment-based drug design. We have developed a comprehensive framework that uses machine learning and three-dimensional protein-ligand structures to address this challenge. Our method, FRAME, iteratively determines where on a ligand to add fragments, selects fragments to add, and predicts the geometry of the added fragments. On a comprehensive benchmark, FRAME consistently improves predicted affinity and selectivity relative to the initial ligand, while generating molecules with more drug-like chemical properties than docking-based methods currently in widespread use. FRAME learns to accurately describe molecular interactions despite being given no prior information on such interactions. The resulting framework for quality molecular hypothesis generation can be easily incorporated into the workflows of medicinal chemists for diverse tasks, including lead optimization, fragment-based drug discovery, and de novo drug design.

3.
Genome Biol ; 20(1): 170, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31429787

ABSTRACT

BACKGROUND: Circadian rhythms modulate growth and development in all organisms through interlocking transcriptional-translational feedback loops. The transcriptional loop involves chromatin modifications of central circadian oscillators in mammals and plants. However, the molecular basis for rhythmic epigenetic modifications and circadian regulation is poorly understood. RESULTS: Here we report a feedback relationship between diurnal regulation of circadian clock genes and histone modifications in Arabidopsis. On one hand, the circadian oscillators CCA1 and LHY regulate diurnal expression of genes coding for the eraser (JMJ14) directly and writer (SDG2) indirectly for H3K4me3 modification, leading to rhythmic H3K4me3 changes in target genes. On the other hand, expression of circadian oscillator genes including CCA1 and LHY is associated with H3K4me3 levels and decreased in the sdg2 mutant but increased in the jmj14 mutant. At the genome-wide level, diurnal rhythms of H3K4me3 and another histone mark H3K9ac are associated with diurnal regulation of 20-30% of the expressed genes. While the majority (86%) of H3K4me3 and H3K9ac target genes overlap, only 13% of morning-phased and 22% of evening-phased genes had both H3K4me3 and H3K9ac peaks, suggesting specific roles of different histone modifications in diurnal gene expression. CONCLUSIONS: Circadian clock genes promote diurnal regulation of SDG2 and JMJ14 expression, which in turn regulate rhythmic histone modification dynamics for the clock and its output genes. This reciprocal regulatory module between chromatin modifiers and circadian clock oscillators orchestrates diurnal gene expression that governs plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Arabidopsis Proteins/genetics , Histone-Lysine N-Methyltransferase/genetics , Models, Biological , Protein Processing, Post-Translational
4.
Front Surg ; 3: 52, 2016.
Article in English | MEDLINE | ID: mdl-27730124

ABSTRACT

AIM: We have recently identified and characterized cancer stem cell (CSC) subpopulations within moderately differentiated buccal mucosal squamous cell carcinoma (MDBMSCC). We hypothesized that these CSCs express components of the renin-angiotensin system (RAS). METHODS: 3,3'-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on formalin-fixed paraffin-embedded MDBMSCC samples to investigate the expression of the components of the RAS: (pro)renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2). NanoString mRNA gene expression analysis and Western Blotting (WB) were performed on snap-frozen MDBMSCC samples to confirm gene expression and translation of these transcripts, respectively. Double immunofluorescent (IF) IHC staining of these components of the RAS with the embryonic stem cell markers OCT4 or SALL4 was performed to demonstrate their localization in relation to the CSC subpopulations within MDBMSCC. RESULTS: DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1, and ATIIR2 in MDBMSCC. IF IHC staining showed that PRR was expressed by the CSC subpopulations within the tumor nests, the peri-tumoral stroma, and the endothelium of the microvessels within the peri-tumoral stroma. ATIIR1 and ATIIR2 were localized to the CSC subpopulations within the tumor nests and the peri-tumoral stroma, while ACE was localized to the endothelium of the microvessels within the peri-tumoral stroma. WB and NanoString analyses confirmed protein expression and transcription activation of PRR, ACE, and ATIIR1, but not of ATIIR2, respectively. CONCLUSION: Our novel findings of the presence and localization of PRR, ACE, ATIIR1, and potentially ATIIR2 to the CSC subpopulations within MDBMSCC suggest CSC as a therapeutic target by modulation of the RAS.

5.
Front Surg ; 3: 46, 2016.
Article in English | MEDLINE | ID: mdl-27532037

ABSTRACT

AIM: To identify and characterize cancer stem cells (CSC) in moderately differentiated buccal mucosa squamous cell carcinoma (MDBMSCC). METHODS: Four micrometer-thick, formalin-fixed, paraffin-embedded MDBMSCC samples from six patients underwent 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers, NANOG, OCT4, SALL4, SOX2, and pSTAT3; cancer stem cell marker, CD44; squamous cell carcinoma (SCC) marker, EMA; and endothelial marker, CD34. The transcriptional activities of the genes encoding NANOG, OCT4, SOX2, SALL4, STAT3, and CD44 were studied using NanoString gene expression analysis and colorimetric in situ hybridization (CISH) for NANOG, OCT4, SOX2, SALL4, and STAT3. RESULTS: Diaminobenzidine and immunofluorescent (IF) IHC staining demonstrated the presence of (1) an EMA(+)/CD44(+)/SOX2(+)/SALL4(+)/OCT4(+)/pSTAT3(+)/NANOG(+) CSC subpopulation within the tumor nests; (2) an EMA(-)/CD44(-)/CD34(-)/SOX2(+)/OCT4(+)/pSTAT3(+)/NANOG(+) subpopulation within the stroma between the tumor nests; and (3) an EMA(-)/CD44(-)/CD34(+)/SOX2(+)/SALL4(+)/OCT4(+)/pSTAT3(+)/NANOG(+) subpopulation on the endothelium of the microvessels within the stroma. The expression of CD44, SOX2, SALL4, OCT4, pSTAT3, and NANOG was confirmed by the presence of mRNA transcripts, using NanoString analysis and NANOG, OCT4, SOX2, SALL4, and STAT3 by CISH staining. CONCLUSION: This study demonstrated a novel finding of three separate CSC subpopulations within MDBMSCC: (1) within the tumor nests expressing EMA, CD44, SOX2, SALL4, OCT4, pSTAT3, and NANOG; (2) within the stroma expressing SOX2, SALL4, OCT4, pSTAT3, and NANOG; and (3) on the endothelium of the microvessels within the stroma expressing CD34, SOX2, SALL4, OCT4, pSTAT3, and NANOG.

7.
Plant Cell ; 26(6): 2430-2440, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24894042

ABSTRACT

Hybrid plants and animals often show increased levels of growth and fitness, a phenomenon known as hybrid vigor or heterosis. Circadian rhythms optimize physiology and metabolism in plants and animals. In plant hybrids and polyploids, expression changes of the genes within the circadian regulatory network, such as CIRCADIAN CLOCK ASSOCIATED1 (CCA1), lead to heterosis. However, the relationship between allelic CCA1 expression and heterosis has remained elusive. Here, we show a parent-of-origin effect on altered circadian rhythms and heterosis in Arabidopsis thaliana F1 hybrids. This parent-of-origin effect on biomass heterosis correlates with altered CCA1 expression amplitudes, which are associated with methylation levels of CHH (where H = A, T, or C) sites in the promoter region. The direction of rhythmic expression and hybrid vigor is reversed in reciprocal F1 crosses involving mutants that are defective in the RNA-directed DNA methylation pathway (argonaute4 and nuclear RNA polymerase D1a) but not in the maintenance methylation pathway (methyltransferase1 and decrease in DNA methylation1). This parent-of-origin effect on circadian regulation and heterosis is established during early embryogenesis and maintained throughout growth and development.

8.
J Am Chem Soc ; 133(40): 16127-35, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21866965

ABSTRACT

Homogeneously glycosylated proteins are important targets for fundamental research and for biopharmaceutical development. The use of unnatural protein-glycan linkages bearing structural similarity to their native counterparts can accelerate the synthesis of glycoengineered proteins. Here we report an approach toward generating homogeneously glycosylated proteins that involves chemical attachment of aminooxy glycans to recombinantly produced proteins via oxime linkages. We employed the recently introduced aldehyde tag method to obtain a recombinant protein with the aldehyde-bearing formylglycine residue at a specific site. Complex aminooxy glycans were synthesized using a new route that features N-pentenoyl hydroxamates as key intermediates that can be readily elaborated chemically and enzymatically. We demonstrated the method by constructing site-specifically glycosylated variants of the human growth hormone.


Subject(s)
Amino Sugars/chemistry , Glycoproteins/chemistry , Human Growth Hormone/chemistry , Aldehydes/chemistry , Amino Sugars/chemical synthesis , Glycosylation , Human Growth Hormone/genetics , Humans , Models, Molecular , Oximes/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
9.
J Bacteriol ; 193(6): 1405-13, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21216995

ABSTRACT

In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.


Subject(s)
Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Division , Cytoskeletal Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Protein Multimerization , Microscopy, Electron, Transmission , Protein Binding , Protein Interaction Mapping , Protein Stability , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...