Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 760
Filter
1.
Reprod Biol Endocrinol ; 22(1): 78, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987797

ABSTRACT

OBJECTIVE: To explore the optimal models for predicting the formation of high-quality embryos in Poor Ovarian Response (POR) Patients with Progestin-Primed Ovarian Stimulation (PPOS) using machine learning algorithms. METHODS: A retrospective analysis was conducted on the clinical data of 4,216 POR cycles who underwent in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) at Sichuan Jinxin Xinan Women and Children's Hospital from January 2015 to December 2021. Based on the presence of high-quality cleavage embryos 72 h post-fertilization, the samples were divided into the high-quality cleavage embryo group (N = 1950) and the non-high-quality cleavage embryo group (N = 2266). Additionally, based on whether high-quality blastocysts were observed following full blastocyst culture, the samples were categorized into the high-quality blastocyst group (N = 124) and the non-high-quality blastocyst group (N = 1800). The factors influencing the formation of high-quality embryos were analyzed using logistic regression. The predictive models based on machine learning methods were constructed and evaluated accordingly. RESULTS: Differential analysis revealed that there are statistically significant differences in 14 factors between high-quality and non-high-quality cleavage embryos. Logistic regression analysis identified 14 factors as influential in forming high-quality cleavage embryos. In models excluding three variables (retrieved oocytes, MII oocytes, and 2PN fertilized oocytes), the XGBoost model performed slightly better (AUC = 0.672, 95% CI = 0.636-0.708). Conversely, in models including these three variables, the Random Forest model exhibited the best performance (AUC = 0.788, 95% CI = 0.759-0.818). In the analysis of high-quality blastocysts, significant differences were found in 17 factors. Logistic regression analysis indicated that 13 factors influence the formation of high-quality blastocysts. Including these variables in the predictive model, the XGBoost model showed the highest performance (AUC = 0.813, 95% CI = 0.741-0.884). CONCLUSION: We developed a predictive model for the formation of high-quality embryos using machine learning methods for patients with POR undergoing treatment with the PPOS protocol. This model can help infertility patients better understand the likelihood of forming high-quality embryos following treatment and help clinicians better understand and predict treatment outcomes, thus facilitating more targeted and effective interventions.


Subject(s)
Machine Learning , Ovulation Induction , Progestins , Humans , Female , Ovulation Induction/methods , Retrospective Studies , Adult , Pregnancy , Progestins/pharmacology , Fertilization in Vitro/methods , Embryonic Development/drug effects , Embryonic Development/physiology , Sperm Injections, Intracytoplasmic/methods , Blastocyst/drug effects , Blastocyst/physiology , Embryo Transfer/methods , Pregnancy Rate
2.
Fitoterapia ; : 106122, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992474

ABSTRACT

Chemical investigation on the aqueous extract of Dendrobium aphyllum led to the isolation of thirty-one constituents with structures identified by analysis of the extensive spectroscopic data (1D/2D NMR, MS, UV, and ECD), including previously undescribed two bibenzyls, one furfural, and one phenolic acid, namely trigonopol D (1), trigonopol C (2), dendrofunan A (10), and 6-(4-hydroxy-3-methoxyphenyl)-3,6-dioxohexyl acetate (30), respectively, as well as twenty-seven known ones. Among them, there were one new natural product (11), seven compounds (6-7, 9, 12, 20, 28, 31) described from the genus Dendrobium for the first time, and fifteen compounds (8, 13-17, 19, 21-27, 29) isolated from D. aphyllum for the first time. Further, the antioxidant and anti-inflammatory potentials of fifteen compounds (4-5, 8, 11-12, 14-19, 22, 24, 26, and 29) with significant scavenging capacities against DPPH and hydroxyl radicals, and virtual docking activities inhibiting COX-2 and 5-LOX, respectively. Our study may draw the attention of medicinal plant taxonomists and supply potential quality markers for discrimination of D. aphyllum from other species in Dendrobium genus.

3.
Eur J Neurosci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992988

ABSTRACT

The involvement of inwardly rectifying potassium channel 4.1 (Kir4.1) in neuropathic pain has been established. However, there is limited understanding of the downstream mechanism through which Kir4.1 contributes to orofacial neuropathic pain. The objective of this study was to examine the regulation of Kir4.1 on the expression of pannexin 3 (Panx3) in the trigeminal ganglion (TG) and the underlying mechanism in the context of orofacial neuropathic pain caused by chronic constriction injury of the infraorbital nerve (CCI-ION). The study observed a significant increase in Panx3 expression in the TG of mice with CCI-ION. Inhibition of Panx3 in the TG of CCI-ION mice resulted in alleviation of orofacial mechanical allodynia. Furthermore, conditional knockdown (CKD) of Kir4.1 in the TG of both male and female mice led to mechanical allodynia and upregulation of Panx3 expression. Conversely, overexpression of Kir4.1 decreased Panx3 levels in the TG and relieved mechanical allodynia in CCI-ION mice. In addition, silencing Kir4.1 in satellite glial cells (SGCs) decreased Panx3 expression and increased the phosphorylation of P38 MAPK. Moreover, silencing Kir4.1 in SGCs increased the levels of reactive oxygen species (ROS). The elevated phosphorylation of P38 MAPK resulting from Kir4.1 silencing was inhibited by using a superoxide scavenger known as the tempol. Silencing Panx3 in the TG in vivo attenuated the mechanical allodynia caused by Kir4.1 CKD. In conclusion, these findings suggest that the reduction of Kir4.1 promotes the expression of Panx3 by activating the ROS-P38 MAPK signalling pathway, thus contributing to the development of orofacial neuropathic pain.

4.
Article in English | MEDLINE | ID: mdl-38967632

ABSTRACT

The structures of three 1:1 cocrystal forms of etoricoxib {ETR; systematic name: 5-chloro-2-(6-methylpyridin-3-yl)-3-[4-(methylsulfonyl)phenyl]pyridine, C18H15ClN2O2S} have been synthesized and characterized by single-crystal X-ray diffraction; these are etoricoxib-benzoic acid (1/1), C18H15ClN2O2S·C7H6O2 (ETR-Bz), etoricoxib-4-fluorobenzoic acid (1/1), C18H15ClN2O2S·C7H5FO2 (ETR-PFB), and etoricoxib-4-nitrobenzoic acid (1/1), C18H15ClN2O2S·C7H5NO4 (ETR-PNB). Powder X-ray diffraction and thermal differential scanning calorimetry-thermogravimetry (DSC-TG) techniques were also used to characterize these multicomponent systems. Due to the influence of the corresponding acids, ETR shows different conformations. Furthermore, the energetic contributions of the supramolecular motifs have been established by energy framework studies of the stabilizing interaction forces and are consistent with the thermal stability of the cocrystals.

5.
Org Biomol Chem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007293

ABSTRACT

Bicyclic peptides are a powerful modality for engaging challenging drug targets such as protein-protein interactions. Here, we use 1,2,3-tris(bromomethyl)benzene (1,2,3-TBMB) to access bicyclic peptides with diverse conformations that differ from conventional bicyclisation products formed with 1,3,5-TBMB. Bicyclisation at cysteine residues under aqueous buffer conditions proceeds efficiently, with broad substrate scope, compatibility with high-throughput screening, and clean conversion (>90%) for 96 of the 115 peptides tested. We envisage that the 1,2,3-TBMB linker will be applicable to a variety of peptide screening techniques in drug discovery.

6.
Anal Methods ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028021

ABSTRACT

Protein glycosylation plays a crucial role in various biological processes and is related to various diseases. Highly specific enrichment of glycopeptides before mass spectrometry detection is crucial for comprehensive glycoproteomic analysis. However, it still remains a great challenge due to the absence of affinity materials with excellent enrichment efficiency. In this work, a triazine structure linked by a -NH- bond of two-dimensional (2-D) covalent organic framework (COF) nanosheets was synthesized as an affinity adsorbent for the selective capture of glycopeptides. In particular, by introducing hydrophilic monomers via a bottom-up approach, the 2-D COF (denoted as NENP-1) nanosheets were provided with abundant amino groups and inherent hydrophilicity. Owing to the specific surface area and excessive accessible sites for hydrophilicity, the resulting NENP-1 nanosheets exhibited an outstanding glycopeptide enrichment efficiency from standard samples with a superior detection sensitivity (1 × 10-10 M), good enrichment selectivity (1 : 800, HRP tryptic digest to BSA protein), excellent binding capacity (100 mg g-1), great reusability, and recovery (60.2%). Furthermore, using the NENP-1 nanosheet adsorbent, twenty-four endogenous glycopeptides in the serum of patients with gastric cancer were successfully identified by LC-MS/MS technology, which illustrates a promising prospective of hydrophilic COF nanosheets in glycoproteomics research.

8.
ACS Org Inorg Au ; 4(3): 306-318, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38855334

ABSTRACT

Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (1-3) bearing bis(benzimidazole)pyrazolide ligands (H 2 L1-H 2 L3). H 2 L3 contains electron-donating substituents and noninnocent components, resulting in catalyst 3 exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [3] and [H2O] under neutral and alkaline conditions. In contrast to previously reported catalyst 1, catalyst 3 exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the L3Co2 III(µ-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst 3 acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species 1-3 leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.

9.
Nutrients ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38892536

ABSTRACT

The diversity and functionality of gut microbiota may play a crucial role in the function of human motor-related systems. In addition to traditional nutritional supplements, there is growing interest in microecologics due to their potential to enhance sports performance and facilitate post-exercise recovery by modulating the gut microecological environment. However, there is a lack of relevant reviews on this topic. This review provides a comprehensive overview of studies investigating the effects of various types of microecologics, such as probiotics, prebiotics, synbiotics, and postbiotics, on enhancing sports performance and facilitating post-exercise recovery by regulating energy metabolism, mitigating oxidative-stress-induced damage, modulating immune responses, and attenuating bone loss. Although further investigations are warranted to elucidate the underlying mechanisms through which microecologics exert their effects. In summary, this study aims to provide scientific evidence for the future development of microecologics in athletics.


Subject(s)
Athletes , Athletic Performance , Exercise , Gastrointestinal Microbiome , Probiotics , Humans , Athletic Performance/physiology , Probiotics/administration & dosage , Gastrointestinal Microbiome/physiology , Exercise/physiology , Prebiotics/administration & dosage , Synbiotics/administration & dosage , Energy Metabolism , Oxidative Stress , Dietary Supplements , Post-Exercise Recovery
10.
Nutrients ; 16(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38892567

ABSTRACT

The intestinal tract of humans harbors a dynamic and complex bacterial community known as the gut microbiota, which plays a crucial role in regulating functions such as metabolism and immunity in the human body. Numerous studies conducted in recent decades have also highlighted the significant potential of the gut microbiota in promoting human health. It is widely recognized that training and nutrition strategies are pivotal factors that allow athletes to achieve optimal performance. Consequently, there has been an increasing focus on whether training and dietary patterns influence sports performance through their impact on the gut microbiota. In this review, we aim to present the concept and primary functions of the gut microbiota, explore the relationship between exercise and the gut microbiota, and specifically examine the popular dietary patterns associated with athletes' sports performance while considering their interaction with the gut microbiota. Finally, we discuss the potential mechanisms by which dietary patterns affect sports performance from a nutritional perspective, aiming to elucidate the intricate interplay among dietary patterns, the gut microbiota, and sports performance. We have found that the precise application of specific dietary patterns (ketogenic diet, plant-based diet, high-protein diet, Mediterranean diet, and high intake of carbohydrate) can improve vascular function and reduce the risk of illness in health promotion, etc., as well as promoting recovery and controlling weight with regard to improving sports performance, etc. In conclusion, although it can be inferred that certain aspects of an athlete's ability may benefit from specific dietary patterns mediated by the gut microbiota to some extent, further high-quality clinical studies are warranted to substantiate these claims and elucidate the underlying mechanisms.


Subject(s)
Athletes , Athletic Performance , Diet , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Athletic Performance/physiology , Sports Nutritional Physiological Phenomena , Exercise/physiology , Feeding Behavior/physiology , Dietary Patterns
11.
Micromachines (Basel) ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930766

ABSTRACT

This study introduces a novel approach for fabricating vertically stacked mini-LED arrays, integrating InGaN yellow and blue epitaxial layers with a stress buffer layer to enhance optoelectronic characteristics and structural stability. This method significantly simplifies the LED design by reducing the need for RGB configurations, thus lowering costs and system complexity. Employing vertical stacking integration technology, the design achieves high-density, efficient white light production suitable for multifunctional applications, including automotive lighting and outdoor signage. Experimental results demonstrate the exceptional performance of the stacked yellow and blue mini-LEDs in terms of luminous efficiency, wavelength precision, and thermal stability. The study also explores the performance of these LEDs under varying temperature conditions and their long-term reliability, indicating that InGaN-based yellow LEDs offer superior performance over traditional AlGaInP yellow LEDs, particularly in high-temperature environments. This technology promises significant advancements in the design and application of lighting systems, with potential implications for both automotive and general illumination markets.

12.
Gene ; 927: 148735, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944166

ABSTRACT

BACKGROUND: OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS: The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS: OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS: In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.

13.
Biomed Pharmacother ; 177: 117006, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908197

ABSTRACT

Neuropathic pain is a pathological state induced by the aberrant generation of pain signals within the nervous system. Ginkgolide B(GB), an active component found of Ginkgo. biloba leaves, has neuroprotective properties. This study aimed to explore the effects of GB on neuropathic pain and its underlying mechanisms. In the in vivo study, we adopted the rat chronic constriction injury model, and the results showed that GB(4 mg/kg) treatment effectively reduced pain sensation in rats and decreased the expressions of Iba-1 (a microglia marker), NLRP3 inflammasome, and inflammatory factors, such as interleukin (IL)-1ß, in the spinal cord 7 days post-surgery. In the in vitro study, we induced microglial inflammation using lipopolysaccharide (500 ng/mL) / adenosine triphosphate (5 mM) and treated it with GB (10, 20, and 40 µM). GB upregulated the expression of mitophagy proteins, such as PINK1, Parkin, LC3 II/I, Tom20, and Beclin1, and decreased the cellular production of reactive oxygen species. Moreover, it lowered the expression of inflammation-related proteins, such as Caspase-1, IL-1ß, and NLRP3 in microglia. However, this effect was reversed by Parkin shRNA/siRNA or the autophagy inhibitor 3-methyladenine (5 mM). These findings reveal that GB alleviates neuropathic pain by mitigating neuroinflammation through the activation of PINK1-Parkin-mediated mitophagy.

14.
Heliyon ; 10(11): e32260, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882349

ABSTRACT

Programmed death-1 (PD-1) acts as a T cell checkpoint and is important in controlling T cell exhaustion. Blocking the intercommunication across PD-1 and PD-L1 is promising for advanced lung cancer treatment. However, the response rate requires being strengthened. This study aimed to determine whether the combination treatment of Qingfei mixture (QFM) and PD-1 inhibitor could improve the sensitivity of monoclonal antibody by regulating STAT1/IDO1-mediated tryptophan (Trp)-kynurenine (Kyn) pathway. The in vivo imaging system, immunofluorescence, hematoxylin-eosin staining, TUNEL, flow cytometry, HPLC, and ELISA were used to estimate the anti-tumor effects in LLC-luc tumor-bearing C57BL/6 mice treated with QFM, PD-1 inhibitor, 2-NP (enhancer of STAT1 transcription), and FICZ (AhR agonist) alone or in combination. IFN-γ-mediated A549 and LLC cells were treated with QFM-containing serum and fludarabine (FLU, STAT1 inhibitor), and cell viability, apoptosis, and Kyn content were then evaluated using CCK-8 assays, flow cytometry, and HPLC assays, respectively. Additionally, the expressions of STAT1, IDO1, AhR, NFATc1, TRIP12, PD-1, and PD-L1 were measured in vivo and in vitro. We found QFM increased the anti-cancer actions of PD-1 inhibitors by increasing the CD8+IFNγ+ T cells infiltration and decreasing the ratio of Kyn/Trp. Besides, QFM-containing serum suppressed the proliferation and promoted apoptosis in A549 and LLC cells, meanwhile, FLU boosted the effects of QFM-containing serum. Moreover, the suppression of tumor growth in the combination therapy was attenuated in the mice receiving 2-NP or FICZ. The occurrence of the above results was accompanied by a decrease in STAT1, IDO1, AhR, PD-1, and PD-L1 expressions. Collectively, the findings suggested that QFM may increase the influences of PD-1 inhibitors at least partially by blocking the STAT1/IDO1-mediated tryptophan-kynurenine pathway in lung cancer.

15.
Methods Enzymol ; 698: 361-378, 2024.
Article in English | MEDLINE | ID: mdl-38886039

ABSTRACT

Alternative Lengthening of Telomeres (ALT) is a mechanism used by 10-15% of all cancers to achieve replicative immortality, bypassing the DNA damage checkpoint associated with short telomeres that leads to cellular senescence or apoptosis. ALT does not occur in non-cancerous cells, presenting a potential therapeutic window for cancers where this mechanism is active. Disrupting the FANCM-RMI interaction has emerged as a promising therapeutic strategy that induces synthetic ALT lethality in genetic studies on cancer cell lines. There are currently no chemical inhibitors reported in the literature, in part due to the lack of reliable biophysical or biochemical assays to screen for FANCM-RMI disruption. Here we describe the development of a robust competitive fluorescence polarization (FP) assay that quantifies target binding at the FANCM-RMI interface. The assay employs a labeled peptide tracer TMR-RaMM2 derived from the native MM2 binding motif, which binds to recombinant RMI1-RMI2 and can be displaced by competitive inhibitors. We report the methods for recombinant production of RMI1-RMI2, design and evaluation of the tracer TMR-RaMM2, along with unlabeled peptide inhibitor controls to enable ALT-targeted drug discovery.


Subject(s)
Fluorescence Polarization , Telomere Homeostasis , Humans , Fluorescence Polarization/methods , Telomere Homeostasis/drug effects , Protein Binding , Telomere/metabolism , Telomere/genetics , DNA Helicases
16.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828818

ABSTRACT

Here, we report the frequency-dependent spectrum of ice Ih in the range of 0.2-2 THz. We confirm the presence of a feature that blue-shifts from around 1.55-1.65 THz with a decreasing temperature from 260 to 160 K. There is also a change in the trend of the refractive index of ice corresponding to a dispersion, which is also around 1.6 THz. The features are reproduced in data acquired with three commercial terahertz time-domain spectrometers. Computer-simulated spectra assign the feature to lattice translations perpendicular to the 110 and 1̄10 planes of the ice Ih crystal. The feature's existence should be recognized in the terahertz measurements of frozen aqueous solution samples to avoid false interpretations.

17.
Proc Natl Acad Sci U S A ; 121(20): e2321260121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38722807

ABSTRACT

Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Point Mutation , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Models, Molecular
18.
Discov Nano ; 19(1): 75, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691247

ABSTRACT

The technology of RGBY micro resonant cavity light emitting diodes (micro-RCLEDs) based on quantum dots (QDs) is considered one of the most promising approaches for full-color displays. In this work, we propose a novel structure combining a high color conversion efficiency (CCE) QD photoresist (QDPR) color conversion layer (CCL) with blue light micro RCLEDs, incorporating an ultra-thin yellow color filter. The additional TiO2 particles inside the QDPR CCL can scatter light and disperse QDs, thus reducing the self-aggregation phenomenon and enhancing the eventual illumination uniformity. Considering the blue light leakage, the influences of adding different color filters are investigated by illumination design software. Finally, the introduction of low-temperature atomic layer deposition (ALD) passivation protection technology at the top of the CCL can enhance the device's reliability. The introduction of RGBY four-color subpixels provides a viable path for developing low-energy consumption, high uniformity, and efficient color conversion displays.

19.
Int J Biol Macromol ; 268(Pt 2): 131910, 2024 May.
Article in English | MEDLINE | ID: mdl-38679267

ABSTRACT

In this study, polysaccharides (RRTPs) were extracted from Rosa roxburghii Tratt pomace by hot water or ultrasound (US)-assisted extraction. The structural properties and potential prebiotic functions of RRTPs were investigated. Structural characterization was conducted through HPAEC, HPGPC, GC-MS, FT-IR and SEM. Chemical composition analysis revealed that RRTPs extracted by hot water (RRTP-HW) or US with shorter (RRTP-US-S) or longer duration (RRTP-US-L) all consisted of galacturonic acid, galactose, glucose, arabinose, rhamnose and glucuronic acid in various molar ratio. US extraction caused notable reduction in molecular weight of RRTPs but no significant changes in primary structures. Fecal fermentation showed RRTPs could reshape microbial composition toward a healthier balance, leading to a higher production of beneficial metabolites including total short-chain fatty acids, curcumin, noopept, spermidine, 3-feruloylquinic acid and citrulline. More beneficial shifts in bacterial population were observed in RRTP-HW group, while RRTP-US-S had stronger ability to stimulate bacterial short-chain fatty acids production. Additionally, metabolic profiles with the intervention of RRTP-HW, RRTP-US-S or RRTP-US-L were significantly different from each other. The results suggested RRTPs had potential prebiotic effects which could be modified by power US via molecular weight degradation.


Subject(s)
Polysaccharides , Prebiotics , Rosa , Rosa/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Molecular Weight , Ultrasonic Waves , Fermentation , Chemical Fractionation/methods
20.
J Clin Hypertens (Greenwich) ; 26(6): 674-686, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577938

ABSTRACT

The aim of this study is to evaluate the developments in the treatment and prevalence of hypertension by demographic subgroups in least developed area of China in 2012 and 2022. This population-based cross-sectional study was conducted in 2012 and 2022, we applied stratified multistage random sampling to investigate residents aged 18 years or older in Gansu, the least developed province in the northwest of China. Questionnaires and anthropometric measurements were given to all respondents. The standardized prevalence of hypertension in adults in Gansu increased from 26.1% in 2012 to 28.8% in 2022. Compared with 2012, the control rate remains decreased despite the significantly improved awareness and treatment rates of hypertension in 2022. Apart from the reversal of the control rate, the trend of higher prevalence in men and higher awareness and treatment rates in women has not changed. There was an obviously increase in the proportion of participants who had received health education and hypertension management services from medical workers. The treatment was still primarily monotherapy, and there was no significant improvement in the prescription of medication. The prevalence of hypertension has increased mildly in the least developed region of China over the past decade, and the challenge of hypertension management has shifted from increasing awareness and treatment rates to increasing control rates. The onset and control of hypertension are affected by education methods, BMI, local economic conditions and other factors, and targeted strategies can be adopted to strengthen the management of hypertension in economically underdeveloped areas of China.


Subject(s)
Antihypertensive Agents , Health Knowledge, Attitudes, Practice , Hypertension , Humans , Hypertension/epidemiology , Hypertension/drug therapy , Hypertension/therapy , China/epidemiology , Male , Female , Prevalence , Cross-Sectional Studies , Middle Aged , Adult , Antihypertensive Agents/therapeutic use , Aged , Surveys and Questionnaires , Adolescent , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...