Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Heliyon ; 10(7): e28255, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560198

ABSTRACT

The thermal performance of a flat plate solar collector (FPSC) is a critical indicator that depends on the environment, operational parameters, and dimensions. This study examines the impact of size on thermal performance improvement mechanisms. Firstly, numerical simulation models are introduced as the foundation for optimization research. This involves analyzing the flow resistance of microchannels and defining their structural parameters. Furthermore, experimental tests were conducted on a stainless steel flat plate solar collector (S/S FPSC) with the best design parameters to validate the accuracy of the mathematical model during the design phase. The results indicate that increasing the width of the microchannel and the height of corrugations can effectively enhance the thermal performance of the S/S FPSC. The momentary efficiency is projected to reach a remarkable 86.10% under ideal circumstances. Additionally, a mathematical expression was proposed to establish the relationship between the surrounding conditions and the momentary efficiency of the S/S FPSC. Moreover, the microchannel comprises S/S material, maintaining a homogeneous temperature distribution to maximize heat absorption. The use of stainless steel also extends the lifespan of the FPSC.

2.
Biomacromolecules ; 25(5): 3087-3097, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38584438

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.


Subject(s)
Neoplasm Invasiveness , Peptides , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Movement/drug effects , Cell Line, Tumor , Heparitin Sulfate/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Cell Proliferation/drug effects , Neovascularization, Pathologic/drug therapy
3.
J Hazard Mater ; 471: 134251, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640669

ABSTRACT

Corn planting is often associated with serious atrazine pollution and excessive corn straw amounts, causing severe threats to environmental and ecological security, as well as to green agricultural development. In this context, a Paenarthrobacter sp. KN0901 strain was applied to simultaneously remove atrazine and straw at low temperatures. The results of whole genome sequencing indicated that KN0901 encoded over nine straw biodegradation-related enzymes. In addition, 100 % and 27.3 % of atrazine and straw were simultaneously degraded by KN0901 following an incubation period of seven days at 15 ºC and 180 rpm in darkness. The KN0901 strain maintained high atrazine and straw biodegradation rates under temperature and pH ranges of 4-25 ºC and 5-9, respectively. The simultaneous atrazine and corn straw additions improved the microbial growth and biodegradation rates by increasing the functional gene expression level, cell viability, inner membrane permeability, and extracellular polymeric substance contents of KN0901. The hydroponic experiment results demonstrated the capability of the KN0901 strain to mitigate the toxicity of atrazine to soybeans in four days under the presence of corn straw. The present study provides a new perspective on the development of bioremediation approaches and their application to restore atrazine-polluted cornfields with large straw quantities, particularly in cold areas.


Subject(s)
Atrazine , Biodegradation, Environmental , Cold Temperature , Herbicides , Zea mays , Atrazine/toxicity , Atrazine/metabolism , Herbicides/toxicity , Herbicides/metabolism , Whole Genome Sequencing , Genome, Bacterial
4.
J Sci Food Agric ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38318758

ABSTRACT

The rapid growth of organic solid waste has recently exacerbated environmental pollution problems, and its improper treatment has led to the loss of a large number of biomass resources. Here, we expound the advantages of microbial agents composting compared with conventional organic solid waste treatment technology, and review the important role of microbial agents composting in organic solid waste composting from the aspects of screening and identification, optimization of conditions, mechanism of action, combination with other technologies and ultra-high-temperature and ultra-low-temperature microbial composting. We discuss the value of microorganisms with different growth conditions in organic solid waste composting, and put forward a seasonal multi-temperature composite microbial composting technology. Provide new ideas for the all-round treatment of microbial agents in organic solid waste in the future. © 2024 Society of Chemical Industry.

5.
Bioresour Technol ; 396: 130415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316228

ABSTRACT

Microbial immobilization technology is effective in improving bioremediation efficiency and heavy metal pollution. Herein, Bacillus LD513 with hexavalent chromium (Cr(VI)) tolerance was isolated and immobilized on a novel ferrous disulfide (FeS2)/iron nitride (FeN) modified hydrochar (Fe3-SNHC) prepared from waste straws. The prepared Fe3-SNHC-based LD513 (FeLD) significantly improves Cr(VI) adsorption and reduction by 31.4 % and 15.7 %, respectively, compared to LD513 alone. Furthermore, the FeLD composite system demonstrates efficient Cr(VI) removal efficiency and good environmental adaptability under different culture conditions. Microbial metabolism and electrochemical analysis indicate that Fe3-SNHC is an ideal carrier for protecting LD513 activity, promoting extracellular polymer secretion, and reducing oxidative stress. Additionally, the carrier serves as an electron shuttle that accelerates electron transfer and promotes Cr(VI) reduction. Overall, FeLD is an environmentally friendly biocomposite that shows good promise for reducing Cr(VI) contamination in wastewater treatment.


Subject(s)
Bacillus , Ferric Compounds , Iron , Sulfides , Water Pollutants, Chemical , Bacillus/metabolism , Adsorption , Electrons , Chromium/metabolism
6.
Sci Total Environ ; 917: 170541, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38290684

ABSTRACT

Microplastics (MPs) can co-occur widely with heavy metals in soil. This study intended to investigate the influences of the co-exposure of polyethylene MPs (0.5 %, w/w) and cadmium (Cd) in black soil on the Cd distribution, enzyme activities, and bacterial communities in both bulk soil and different sized soil aggregates (> 1, 0.50-1, 0.25-0.50, and < 0.25 mm aggregates) after a 90-day incubation. Our results showed that the existence of MPs increased the distributions of Cd in >1 mm and < 0.25 mm soil aggregates and decreased its distributions in 0.50-1 mm and 0.25-0.50 mm soil aggregates. About 12.15 %-17.65 % and 9.03 %-11.13 % of Cd were distributed in the exchangeable and oxidizable forms in bulk soil and various sized soil aggregates after the addition of MPs which were higher than those in the only Cd-treated soil (11.17 %-14.72 % and 8.66 %-10.43 %, respectively), while opposite tendency was found for Cd in the reducible form. Urease and ß-glucosidase activities in the Cd-treated soils were 1.14-1.18 and 1.07-1.31 times higher than those in the Cd-MPs treated soils. MPs disturbed soil bacterial community at phylum level and increased the bacteria richness in bulk soil. The levels of predicted functional genes which are linked to the biodegradation and metabolism of exogenous substances and soil C and N cycles were altered by the co-exposure of Cd and MPs. The findings of this study could help deepen our knowledge about the responses of soil properties, especially microbial community, to the co-occurrence of MPs and heavy metals in soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Microplastics , Cadmium/analysis , Plastics , Soil , Polypropylenes , Soil Pollutants/analysis , Bacteria
7.
Bioresour Technol ; 388: 129770, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714497

ABSTRACT

In this study, a novel hydrochar containing ferrous disulfide (FeS2) and iron nitride (FeN) was prepared via a one-pot hydrothermal method to enhance the synergistic adsorption and reduction of hexavalent chromium (Cr(VI)). This material (Fe3-SNHC) exhibited a Cr(VI) removal capacity of 431.3 mg·g-1 and high tolerance to coexisting anions at pH 2. Adsorption occurred via monolayer chemisorption. Variation in material structure and density functional theory calculations proved that multiple active sites formed by interactions between heteroatoms improved the chemical inertness of hydrochar. FeN and FeS2 with two electron-donating groups had strong reducing ability to facilitate the conversion of Cr(VI) to trivalent chromium. It was concluded that next to electrostatic adsorption and complexation, synergistic reduction among multiple active sites were the dominant mechanisms involved in the removal Cr(VI). This study shows that Fe3-SNHC is a promising and environment-friendly material for Cr(VI) to remove it from wastewater.


Subject(s)
Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/analysis , Chromium/chemistry
8.
Environ Res ; 237(Pt 2): 116976, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625535

ABSTRACT

Soil, as a heterogeneous body, is composed of different-sized aggregates. There is limited data available on the potential role of microplastics (MPs) in microbial properties at the soil aggregate level. In this study, changes in microbial construction and diversity in farmland bulk soil and aggregates induced by polyethylene MPs (PE-MPs) were investigated at a dose of 0.5% (w/w) through 16s rDNA sequencing and enzyme activity measurements of different particle size aggregates in incubated soil. The presence of low-dose PE-MPs increased the proportion of >1 mm soil aggregates fraction, and decreased soil available nitrogen and available phosphorus in bulk soils. Furthermore, low-dose PE-MPs increased bacterial richness and diversity in 1-0.5 and < 0.25 mm fractions and decreased operational taxonomic unit, abundance-based coverage estimator, and Chao1 indices in bulk soil and >1 mm fractions. The levels of predicted functional genes taking part in the biodegradation and metabolism of exogenous substances also increased. At the phylum level, PE-MPs changed the proportion of Proteobacteria and Actinobacteria. The variations in soil aggregate properties were significantly correlated with the bacterial communities' composition and diversity. This study deepens our perception of the soil microenvironment, microbial community composition, and diversity in response to PE-MPs.

9.
Front Immunol ; 14: 1198053, 2023.
Article in English | MEDLINE | ID: mdl-37275855

ABSTRACT

Background: The role of ferroptosis in irreversible pulpitis (IP) remains unclear. The competing endogenous RNA (ceRNA) theory that has been widely investigated is rarely used studied in IP. Hub lncRNAs selected from a ceRNA network may provide a novel hypothesis for the interaction of ferroptosis and IP. Methods: Differentially expressed genes (DEGs) were intersected with 484 ferroptosis markers to identify differentially expressed ferroptosis-related genes (DE-FRGs). Functional analysis and protein-protein interaction (PPI) networks were constructed to reveal the functions of DE-FRGs. Then, coexpression analyses were conducted between DE-FRGs and DElncRNAs to define ferroptosis-related DElncRNAs (FR-DElncRNAs). Predictions of DE-FRG- and FR-DElncRNA-related miRNAs were obtained, and members of both groups were selected. Additionally, two ceRNA networks consisting of FR-DElncRNAs, miRNAs and DE-FRGs from upregulated and downregulated groups were built. Finally, the hub lncRNAs of the ceRNA networks were used for immuno-infiltration analysis and qPCR verification. Results: According to the results of PCA and clustering analysis, 5 inflamed and 5 healthy pulp tissue samples were selected for analysis. The intersection of DEGs with 484 ferroptosis marker genes identified 72 DE-FRGs. The response to stimulus, cellular process, signaling, localization, and biological regulation pathways related to DE-FRGs were enriched. In total, 161 downregulated and 40 upregulated FR-DElncRNAs were chosen by coexpression analysis for further investigation. The MultimiR package and starBase were used to predict miRNAs of DE-FRGs and FR-DElncRNAs, respectively. The upregulated ceRNA network contained 2 FR-DElncRNAs (↑), 19 miRNAs (↓) and 22 DE-FRGs (↑). The downregulated network contained 44 FR-DElncRNAs (↓), 251 miRNAs (↑) and 10 DE-FRGs (↓). Six hub lncRNAs were identified based on the MCC method (LUCAT1 and AC106897.1 ↑; LINC00943, AL583810.1, AC068888.1, and AC125257.1↓). In addition, strong relationships between hub lncRNAs and immune cells were shown by immune infiltration analysis. Finally, validated by qPCR assays of the pulp tissue of IP patients, the expression levels in clinical samples were consistent with the microarray data. Conclusion: Two ceRNA networks were comprehensively constructed, and 6 hub lncRNAs were identified. These genes provide novel insights into the relationship between ferroptosis and IP. Intriguingly, the LINC00943/hsa-miR-29a-3p/PDK4 axis was deemed to be the key node in this network.


Subject(s)
Ferroptosis , MicroRNAs , Pulpitis , RNA, Long Noncoding , Humans , Ferroptosis/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Biological Assay
10.
J Hazard Mater ; 457: 131764, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37320906

ABSTRACT

Atrazine residues running off the fields and entering water resources are a major threat to food security and the ecosystem. In this study, a psychrotrophic functional strain named KN0901 to remove atrazine residues was screened. KN0901 could degrade 30 mg·L-1 atrazine in 4 days at 15ºC with 105 CFU·mL-1 incubation. The phylogenetic results showed KN0901 belonged to Paenarthrobacter sp. PCR results showed that the functional genes consist of trzN, atzB, and atzC, suggesting atrazine was transformed to cyanuric acid by KN0901. KN0901 could degrade atrazine without adding exogenous carbon and nitrogen sources. What's more, KN0901 could tolerate extreme low temperature (5ºC) and high atrazine concentration (100 mg·L-1). When growth and degradation curves were compared, the results indicated the length of lag time showed significant correlation to atrazine degradation rate. The hydroponic experiments showed that the toxicity of atrazine was significantly reduced with KN0901 treatment. The study provided an effective, economic, and eco-friendly bioremediation measure to address atrazine contamination.


Subject(s)
Atrazine , Herbicides , Atrazine/analysis , Phylogeny , Kinetics , Ecosystem , Decontamination , Hydroponics , Metabolic Networks and Pathways , Biodegradation, Environmental , Herbicides/metabolism , Soil Microbiology
11.
Polymers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242866

ABSTRACT

Pseudomonas sp. SG4502 screened from biodiesel fuel by-products can synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glycerol as a substrate. It contains a typical PHA class II synthase gene cluster. This study revealed two genetic engineering methods for improving the mcl-PHA accumulation capacity of Pseudomonas sp. SG4502. One way was to knock out the PHA-depolymerase phaZ gene, the other way was to insert a tac enhancer into the upstream of the phaC1/phaC2 genes. Yields of mcl-PHAs produced from 1% sodium octanoate by +(tac-phaC2) and ∆phaZ strains were enhanced by 53.8% and 23.1%, respectively, compared with those produced by the wild-type strain. The increase in mcl-PHA yield from +(tac-phaC2) and ∆phaZ was due to the transcriptional level of the phaC2 and phaZ genes, as determined by RT-qPCR (the carbon source was sodium octanoate). 1H-NMR results showed that the synthesized products contained 3-hydroxyoctanoic acid (3HO), 3-hydroxydecanoic acid (3HD) and 3-hydroxydodecanoic acid (3HDD) units, which is consistent with those synthesized by the wild-type strain. The size-exclusion chromatography by GPC of mcl-PHAs from the (∆phaZ), +(tac-phaC1) and +(tac-phaC2) strains were 2.67, 2.52 and 2.60, respectively, all of which were lower than that of the wild-type strain (4.56). DSC analysis showed that the melting temperature of mcl-PHAs produced by recombinant strains ranged from 60 °C to 65 °C, which was lower than that of the wild-type strain. Finally, TG analysis showed that the decomposition temperature of mcl-PHAs synthesized by the (∆phaZ), +(tac-phaC1) and +(tac-phaC2) strains was 8.4 °C, 14.7 °C and 10.1 °C higher than that of the wild-type strain, respectively.

12.
BMC Genomics ; 24(1): 268, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208635

ABSTRACT

BACKGROUND: The molecular mechanisms underlying the onset and progression of irreversible pulpitis have been studied for decades. Many studies have indicated a potential correlation between autophagy and this disease. Against the background of the competing endogenous RNA (ceRNA) theory, protein-coding RNA functions are linked with long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). This mechanism has been widely studied in various fields but has rarely been reported in the context of irreversible pulpitis. The hub genes selected under this theory may represent the key to the interaction between autophagy and irreversible pulpitis. RESULTS: Filtering and differential expression analyses of the GSE92681 dataset, which contains data from 7 inflamed and 5 healthy pulp tissue samples, were conducted. The results were intersected with autophagy-related genes (ARGs), and 36 differentially expressed ARGs (DE-ARGs) were identified. Functional enrichment analysis and construction of the protein‒protein interaction (PPI) network of DE-ARGs were performed. Coexpression analysis was conducted between differentially expressed lncRNAs (DElncRNAs) and DE-ARGs, and 151 downregulated and 59 upregulated autophagy-related DElncRNAs (AR-DElncRNAs) were identified. StarBase and multiMiR were then used to predict related microRNAs of AR-DElncRNAs and DE-ARGs, respectively. We established ceRNA networks including 9 hub lncRNAs (HCP5 and AC112496.1 ↑; FENDRR, AC099850.1, ZSWIM8-AS1, DLX6-AS1, LAMTOR5-AS1, TMEM161B-AS1 and AC145207.5 ↓), which were validated by a qRT‒PCR analysis of pulp tissue from patients with irreversible pulpitis. CONCLUSION: We constructed two networks consisting of 9 hub lncRNAs based on the comprehensive identification of autophagy-related ceRNAs. This study may provide novel insights into the interactive relationship between autophagy and irreversible pulpitis and identifies several lncRNAs that may serve as potential biological markers.


Subject(s)
MicroRNAs , Pulpitis , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Ecotoxicol Environ Saf ; 259: 115037, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37210996

ABSTRACT

Peri-urban vegetable field plays an essential role in providing vegetables for local residents. Because of its particularity, it is affected by both industrial and agricultural activities which have led to the accumulations of heavy metal in soil. So far, information on heavy metal pollution status, spatial features, and human health risks in peri-urban vegetable areas across China is still scarce. To fill this gap, we systematically compiled soil and vegetable data collected from 123 articles published between 2010 and 2022 at a national level. The pollution status of heavy metals (i.e., cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn)) in peri-urban vegetable soils and vegetables were investigated. To evaluate the levels of heavy metal pollution in soil and human health risks, the geoaccumulation index (Igeo) and target hazard quotient (HQ) were calculated. The results showed that mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn in peri-urban vegetable soils were 0.50, 0.53, 12.03, 41.97, 55.56, 37.69, 28.55, and 75.38 mg kg-1, respectively. The main pollutants in peri-urban vegetable soil were Cd and Hg, and 85.25% and 92.86% of the soil samples had Igeo > 1, respectively. The mean Igeo values of this regions followed the order of northwest > central > south > north > east > southwest > northeast for Cd and northeast > northwest > north > southwest > east > central > south for Hg. The mean Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn concentrations in vegetables were 0.30, 0.26, 0.37, 0.54, 1.17, 6.17, 1.96, and 18.56 mg kg-1, respectively. Approximately 87.01% (Cd), 71.43% (Hg), 20% (As), 65.15% (Pb), 27.08% (Cr) of the vegetable samples exceeded the safety requirement values. The vegetables grown in central, northwest, and northern China accumulated much more heavy metals than those grown in other regions. As the HQ values for adults, 53.25% (Cd), 71.43% (Hg), 84.00% (As), and 58.33% (Cr) of the sampled vegetables were higher than 1. For children, the HQ values were higher than 1 for 66.23% (Cd), 73.81% (Hg), 86.00% (As), and 87.50% (Cr) of the sampled vegetables. The findings of this study demonstrate that the situation of heavy metal pollution in peri-urban vegetable areas across China are not optimistic and residents who consume the vegetables are at high risk of health issues. To ensure soil quality and human health, strategies should be taken to guide vegetable production and remedy soil pollution in peri-urban areas with the rapidly urbanizing China.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Vegetables , Soil , Cadmium , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Zinc , Chromium , Nickel , China , Risk Assessment , Environmental Monitoring/methods
14.
Clin Oral Implants Res ; 34(6): 602-617, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37092468

ABSTRACT

AIM: Diabetics experience severe peri-implant inflammatory bone damage. We aimed to provide powerful evidence supporting the novel adiponectin receptor agonist AdipoAI in treating diabetes-associated peri-implantitis. MATERIALS AND METHODS: Twenty-four ZDF-Leprfa/Crl rats were randomly allocated to three groups (N = 8). After feeding with a high-fat diet to establish diabetic rats, experimental peri-implantitis was induced by implanting titanium rods (1.5 mm diameter and 20 mm length) contaminated with Staphylococcus aureus into the femurs. Radiographic evaluation, microCT, histological analyses and qRT-PCR were used to detect inflammatory infiltration and bone destruction. In vitro, the inhibition by AdipoAI of osteoclastogenesis, including the number and function of osteoclasts, was investigated by TRAP staining, immunofluorescence, qRT-PCR and Western blotting. Immunofluorescence, qRT-PCR and Western blotting were also utilized to explore AdipoR1, APPL1, NF-κB and Wnt5a-Ror2 signalling molecules in this process. One-way ANOVA with Tukey's post hoc test was used to compare the data. RESULTS: AdipoAI reduced inflammation and bone destruction caused by peri-implantitis in diabetic rats, which were manifested by a reduction in F4/80-positive macrophage infiltration by 72%, the number of osteoclasts by 58% and the levels of cytokines (p < .05) in disease group. In vitro, 1 µM AdipoAI decreased the number of osteoclasts to 51%, inhibited F-actin ring formation and reduced the levels of related markers (p < .05). Mechanistically, AdipoAI activated AdipoR1/APPL1 and conversely suppressed the phosphorylation of IκB-α, nuclear translocation of P65 and the Wnt5a-Ror2 signalling pathway (p < .05). CONCLUSIONS: AdipoAI suppressed osteoclastogenesis in diabetes-associated peri-implantitis by inhibiting the NF-κB and Wnt5a-Ror2 pathways via the AdipoR1/APPL1 axis.


Subject(s)
Bone Resorption , Dental Implants , Diabetes Mellitus, Experimental , Peri-Implantitis , Rats , Animals , Peri-Implantitis/pathology , Osteogenesis , NF-kappa B/metabolism , NF-kappa B/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , RANK Ligand , Bone Resorption/pathology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/pharmacology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology
15.
Chembiochem ; 24(5): e202200652, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36592168

ABSTRACT

Heparin is a commonly used anticoagulant in clinical practice; however, excessive heparin can cause serious adverse reactions. Convenient and accurate detection of heparin levels is thus very important. In this research, a pyrene-based self-assembling fluorescent peptide PyFFRRR was designed for simple, selective, and efficient heparin detection. The guanidine groups in the arginine residues of PyFFRRR bind tightly with heparin, which is highly sulfated, through electrostatic interactions. Charge neutralization facilitated the self-assembly of PyFFRRR, resulting in its spectral response changing from deep blue monomer fluorescence to green excimer fluorescence. PyFFRRR exhibited excellent sensitivity and selectivity for ratiometric detection of heparin. The binding mechanism was investigated by using spectral and simulation tools, and structural observation. Finally, PyFFRRR was employed in human serum samples for ratiometric detection of heparin.


Subject(s)
Fluorescent Dyes , Heparin , Humans , Heparin/chemistry , Fluorescent Dyes/chemistry , Peptides/chemistry , Anticoagulants , Spectrometry, Fluorescence/methods , Pyrenes/chemistry
16.
Environ Monit Assess ; 195(2): 288, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627398

ABSTRACT

Mines are mostly located in the mountains and national forestlands in Taiwan. The development and use of mines have severely damaged the environment. Despite the long history of mining, the value of forest ecological services lost during mining operations have not yet been incorporated into the expenses borne by miners, and miners are not liable for compensation for ecological damage. This study evaluated the forest ecosystem service benefits lost since mining began, with the aim of providing future reference for calculating ecological damage related to mining. We investigated Mount Taibai mines in Yilan (northeast Taiwan) and Mount Yongshi mines in Hualian (east Taiwan), which are richly forested areas. According to Article 13 of the Mining Act in Taiwan, mining rights have a limitation of 20 years, and the two mines in this study have been in operation for 20 years. By using four ecological services-forest production, carbon sequestration, water resource replenishment, and forest recreation-we estimated the loss of ecological values in both mining regions. The result indicated that the loss of total forest production benefits over 20 years was 7,498.6 k New Taiwanese dollars (NTD) in Mount Taibai mines and 6,543.1 k NTD for Mount Yongshi mines, while the loss for the total carbon sequestration benefits over 20 years was 19,950 k NTD in Mount Taibai mines and 17,400 k NTD in Mount Yongshi mines. The loss of value for the total water conservation benefits over 20 years was 11,160 k NTD in Mount Taibai mines and 5,070 k NTD in Mount Yongshi mines. The loss value of forest recreation over 20 years was 1,443,855 k NTD for the two mines.


Subject(s)
Ecosystem , Mining , Environmental Monitoring , Taiwan
17.
Chemosphere ; 313: 137571, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36535503

ABSTRACT

Microplastic (MP) pollution has become a major concern in recent years. In agricultural production, MPs can not only affect the growth of crops but also affect yield. Compared with micron-sized MPs, nanoplastics (NPs) may be more harmful to plants. However, the effects of NPs on plant growth and development have attracted relatively little attention. As such, research has currently plateaued at the level of morphology and physiology, and the molecular mechanisms are still unclear. In this study, soybeans (Glycine max L.) were treated with polystyrene nanoplastics (PS-NPs) to observe phenotypic changes and measure the effects of PS-NPs on diverse aspects of soybeans. Compared to the control group, the soybean stem and root lengths were inhibited by 11.78% and 12.58%, respectively. The reactive oxygen species content and the antioxidant enzyme activities changed significantly (p < 0.05). The accumulation of manganese (Mn) and magnesium (Mg) in the roots revealed that root transmembrane transport was affected by PS-NPs stress. The content of salicylic acid 2-O-ß-glucoside was inhibited whereas the accumulation of l-tryptophan, the precursor of auxin synthesis, was significantly increased (p < 0.05) in leaves. Transcriptomic analysis showed that PS-NPs could affect soybean DNA repair, membrane protein transport, and hormone synthesis and response. This study revealed the toxicity of NPs to soybeans and that NPs affected a variety of biological processes through transcriptome and hormone metabolome analysis, which provides a theoretical basis to further study the molecular mechanism of the effects on plants.


Subject(s)
Glycine max , Microplastics , Glycine max/metabolism , Microplastics/metabolism , Plastics/metabolism , Transcriptome , Antioxidants/metabolism , Polystyrenes/metabolism , Hormones/metabolism
18.
Sci Total Environ ; 860: 160360, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36414056

ABSTRACT

An efficient, simple, and inexpensive N, S-co-doped hydrochar (SNHC) was synthesized from waste straw by a one-pot hydrothermal process without calcination for the removal of Cr(VI). SNHC demonstrated excellent adsorption performance for Cr(VI) and high stability, achieving a high capacity of 171.33 mg/g (293 K, pH 2) and a capacity retention of 82.73 % after five cycles. The adsorption behavior was determined as a multilayer adsorption process based on chemisorption according to the simulation the results of Freundlich adsorption isotherms and pseudo-second-order models. The characterization of SNHC revealed that graphite N and thiophene S formed by the material were the effective active sites, functioning as electron donors to contribute a significant amount of electrons to reduce Cr(VI) to Cr(III). Therefore, next to electrostatic adsorption and complexation, the synergistic reduction of Cr(VI) by graphite N and thiophene S was the main mechanism for Cr(VI) removal. Additionally, density functional theory calculations indicated a low adsorption energy of thiophene S, which increased the attractive interaction between SNHC and Cr(VI) and played the most important role in reducing Cr(VI). The mechanism of the effect of graphite N and thiophene S on Cr(VI) removal not only offered a comprehensive perspective on the role of N, S co-doped mediation in hydrochar but also provided the basic theory for its practical application.


Subject(s)
Graphite , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Kinetics , Chromium/analysis , Adsorption , Hydrogen-Ion Concentration
19.
Biosens Bioelectron ; 220: 114864, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36395734

ABSTRACT

In this work, a novel, environmentally friendly and simple electrochemical/colorimetric water toxicity biosensor was rationally developed by the continuous release of Fe3+ in a medium. The bioluminescent bacterium Vibrio Fischeri (V. fischeri) was used for the first time as a model bacterium to assess water toxicity for a mediated electrochemical biosensor. The green substance composited by Prussian blue (PB) and yellow K3[Fe(CN)6] was used as the indicator of the colorimetric biosensor. To obtain an ideal electrochemical/colorimetric performance, analytical conditions of the bioassay including NaCl concentration, temperature, concentrations of cells and K3[Fe(CN)6], and incubation time were optimized to 0.5%, 22 oC, 4 (OD600), 10 mM, and 15 min, respectively. The IC50 values of Zn2+, Hg2+, Cd2+ and 3,5-dichlorophenol (3,5-DCP) obtained by electrochemical method were 4.7, 5.0, 17.6 and 10.6 mg/L, respectively. The limits of detection (LODs) of Zn2+, Hg2+, Cd2+ and 3,5-DCP obtained by the naked eye were 6.3, 1.6, 12.5 and 12.5 mg/L, respectively. Two real water samples taken from tap water pipe and the Yitong river were also detected sensitively, and the inhibition ratios obtained were 3.8% and 14.0%, respectively. These results indicate that the V. fischeri-based bioassay is simple, sensitive and inexpensive, which is promising alternative for acute biotoxicity assessment.


Subject(s)
Biosensing Techniques , Mercury , Water , Cadmium
20.
Adv Healthc Mater ; 12(5): e2202122, 2023 02.
Article in English | MEDLINE | ID: mdl-36399015

ABSTRACT

Shape memory sponges are very promising in stopping the bleeding from noncompressible and narrow entrance wounds. However, few shape memory sponges have fast degradable properties in order to not hinder tissue healing. In this work, based on cryopolymerization, a succinic ester-based sponge (Ssponge) is fabricated using gelatin and bi-polyethylene glycol-succinimidyl succinate (Bi-PEG-SS). Compared with the commercially available gelatin sponge (Csponge), Ssponge possesses better water/blood absorption ability and higher mechanical pressure over the surrounding tissues. Moreover, in the models of massive liver hemorrhage after transection and noncompressive liver wounds by penetration, Ssponge exhibits a better hemostasis performance than Csponge. Furthermore, in a liver regeneration model, Ssponge-treated livers shows higher regeneration speed compared with Csponge, including a lower injury score, more cavity-like tissues, less fibrosis and enhanced tissue regeneration. Overall, it is shown that Ssponge, with a fast degradation behavior, is not only highly efficient in stopping bleeding but also not detrimental for tissue healing, possessing promising clinical translational potential.


Subject(s)
Gelatin , Hemostatics , Humans , Gelatin/pharmacology , Hemorrhage/therapy , Hemostasis , Wound Healing , Polyethylene Glycols/pharmacology , Hemostatics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...