Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 7(1): 13, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225423

ABSTRACT

Facial palsy (FP) profoundly influences interpersonal communication and emotional expression, necessitating precise diagnostic and monitoring tools for optimal care. However, current electromyography (EMG) systems are limited by their bulky nature, complex setups, and dependence on skilled technicians. Here we report an innovative biosensing approach that utilizes a PEDOT:PSS-modified flexible microneedle electrode array (P-FMNEA) to overcome the limitations of existing EMG devices. Supple system-level mechanics ensure excellent conformality to the facial curvilinear regions, enabling the detection of targeted muscular ensemble movements for facial paralysis assessment. Moreover, our apparatus adeptly captures each electrical impulse in response to real-time direct nerve stimulation during neurosurgical procedures. The wireless conveyance of EMG signals to medical facilities via a server augments access to patient follow-up evaluation data, fostering prompt treatment suggestions and enabling the access of multiple facial EMG datasets during typical 6-month follow-ups. Furthermore, the device's soft mechanics alleviate issues of spatial intricacy, diminish pain, and minimize soft tissue hematomas associated with traditional needle electrode positioning. This groundbreaking biosensing strategy has the potential to transform FP management by providing an efficient, user-friendly, and less invasive alternative to the prevailing EMG devices. This pioneering technology enables more informed decision-making in FP-management and therapeutic intervention.

2.
Health Data Sci ; 3: 0096, 2023.
Article in English | MEDLINE | ID: mdl-38487198

ABSTRACT

Importance: Brain-computer interface (BCI) decodes and converts brain signals into machine instructions to interoperate with the external world. However, limited by the implantation risks of invasive BCIs and the operational complexity of conventional noninvasive BCIs, applications of BCIs are mainly used in laboratory or clinical environments, which are not conducive to the daily use of BCI devices. With the increasing demand for intelligent medical care, the development of wearable BCI systems is necessary. Highlights: Based on the scalp-electroencephalogram (EEG), forehead-EEG, and ear-EEG, the state-of-the-art wearable BCI devices for disease management and patient assistance are reviewed. This paper focuses on the EEG acquisition equipment of the novel wearable BCI devices and summarizes the development direction of wearable EEG-based BCI devices. Conclusions: BCI devices play an essential role in the medical field. This review briefly summarizes novel wearable EEG-based BCIs applied in the medical field and the latest progress in related technologies, emphasizing its potential to help doctors, patients, and caregivers better understand and utilize BCI devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...