Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 29(6): 210, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38940037

ABSTRACT

Traumatic spinal cord injury (SCI) is a serious disease of the central nervous system. Aside from the limited intrinsic regenerative capacity of neurons, complex microenvironmental disturbances can also lead to further cellular damage and growth inhibition. Programmed cell death regulated by pyroptosis has an important role in the pathogenesis of SCI. While there has been a wealth of new knowledge regarding cellular pyroptosis, a detailed understanding of its role in SCI and possible therapeutic strategies is still lacking. This review summarizes current advances in the regulatory role of pyroptosis-regulated cell death and inflammasome components in the inhibitory microenvironment following SCI, as well as recent therapeutic advances.


Subject(s)
Inflammasomes , Pyroptosis , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Humans , Inflammasomes/metabolism , Animals , Neurons/metabolism
2.
Acta Virol ; 67(1): 51-58, 2023.
Article in English | MEDLINE | ID: mdl-36950885

ABSTRACT

The hepatitis B virus (HBV) infection remains highly prevalent globally. The present study aimed to explore the possible therapeutic effect of notoginsenoside R1, which has attracted considerable attention due to its diverse pharmacological effects, on HBV infection. The HBV-containing hepatocellular carcinoma cell lines, HepG2 and MHCC97H, were used in this study. We first treated the two cell lines with different concentrations of notoginsenoside R1 and subsequently measured the relative levels of HBV DNA, HBV surface antigen, HBV core antigen, and sirtuin 1 (SIRT1) using reverse transcription-quantitative polymerase chain reaction and western blotting. Finally, an HBV hemodynamic replication model was created to test the effect of notoginsenoside R1 on HBV replication. Notoginsenoside R1 inhibited the replication of HBV. This inhibitory effect was mediated through the downregulation of SIRT1 activity. Additionally, the inhibition of SIRT1 activity by silencing its expression or treatment with the SIRT1 inhibitor, selisistat, suppressed HBV replication. Furthermore, our animal experiments demonstrated that notoginsenoside R1 was effective at suppressing HBV replication in vivo. Thus, notoginsenoside R1 suppresses HBV replication by downregulating SIRT1 activity in vitro and in vivo. Keywords: notoginsenoside R1; hepatitis B virus; SIRT1.


Subject(s)
Hepatitis B virus , Hepatitis B , Animals , Hepatitis B virus/genetics , Sirtuin 1/genetics , Sirtuin 1/metabolism , Virus Replication , Hepatitis B/drug therapy , Hepatitis B/genetics , DNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...