Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(22): 6625-6633, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788161

ABSTRACT

All-solid-state lithium-sulfur batteries (ASSLSBs) are promising next-generation battery technologies with a high energy density and excellent safety. Because of the insulating nature of sulfur/Li2S, conventional cathode designs focus on developing porous hosts with high electronic conductivities such as porous carbon. However, carbon hosts boost the decomposition of sulfide electrolytes and suffer from sulfur detachment due to their weak bonding with sulfur/Li2S, resulting in capacity decays. Herein, we propose a counterintuitive design concept of host materials in which nonconductive polar mesoporous hosts can enhance the cycling life of ASSLSBs through mitigating the decomposition of adjacent electrolytes and bonding sulfur/Li2S steadily to avoid detachment. By using a mesoporous SiO2 host filled with 70 wt % sulfur as the cathode, we demonstrate steady cycling in ASSLSBs with a capacity reversibility of 95.1% in the initial cycle and a discharge capacity of 1446 mAh/g after 500 cycles at C/5 based on the mass of sulfur.

2.
Chem Soc Rev ; 52(6): 2145-2192, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36799134

ABSTRACT

Magnesium (Mg) has many unique properties suitable for applications in the fields of energy conversion and storage. These fields presently rely on noble metals for efficient performance. However, among other challenges, noble metals have low natural abundance, which undermines their sustainability. Mg has a high negative standard reduction potential and a unique crystal structure, and its low melting point at 650 °C makes it a good candidate to replace or supplement numerous other metals in various energy applications. These attractive features are particularly helpful for improving the properties and limits of materials in energy systems. However, knowledge of Mg and its practical uses is still limited, despite recent studies which have reported Mg's key roles in synthesizing new structures and modifying the chemical properties of materials. At present, information about Mg chemistry has been rather scattered without any organized report. The present review highlights the chemistry of Mg and its uses in energy applications such as electrocatalysis, photocatalysis, and secondary batteries, among others. Future perspectives on the development of Mg-based materials are further discussed to identify the challenges that need to be addressed.

3.
Nat Commun ; 13(1): 4629, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941110

ABSTRACT

Lithium-sulfur batteries have theoretical specific energy higher than state-of-the-art lithium-ion batteries. However, from a practical perspective, these batteries exhibit poor cycle life and low energy content owing to the polysulfides shuttling during cycling. To tackle these issues, researchers proposed the use of redox-inactive protective layers between the sulfur-containing cathode and lithium metal anode. However, these interlayers provide additional weight to the cell, thus, decreasing the practical specific energy. Here, we report the development and testing of redox-active interlayers consisting of sulfur-impregnated polar ordered mesoporous silica. Differently from redox-inactive interlayers, these redox-active interlayers enable the electrochemical reactivation of the soluble polysulfides, protect the lithium metal electrode from detrimental reactions via silica-polysulfide polar-polar interactions and increase the cell capacity. Indeed, when tested in a non-aqueous Li-S coin cell configuration, the use of the interlayer enables an initial discharge capacity of about 8.5 mAh cm-2 (for a total sulfur mass loading of 10 mg cm-2) and a discharge capacity retention of about 64 % after 700 cycles at 335 mA g-1 and 25 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...