Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 30(Suppl 1): S13702, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39034960

ABSTRACT

Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.


Subject(s)
Optical Imaging , Parathyroid Glands , Spectroscopy, Near-Infrared , Thyroidectomy , Humans , Parathyroid Glands/surgery , Parathyroid Glands/metabolism , Male , Female , Middle Aged , Optical Imaging/methods , Adult , Spectroscopy, Near-Infrared/methods , Paraffin Embedding/methods , Aged , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/analysis
2.
Head Neck ; 46(5): 1009-1019, 2024 May.
Article in English | MEDLINE | ID: mdl-38441255

ABSTRACT

OBJECTIVE: To enhance the accuracy in predicting lymph node metastasis (LNM) preoperatively in patients with papillary thyroid microcarcinoma (PTMC), refining the "low-risk" classification for tailored treatment strategies. METHODS: This study involves the development and validation of a predictive model using a cohort of 1004 patients with PTMC undergoing thyroidectomy along with central neck dissection. The data was divided into a training cohort (n = 702) and a validation cohort (n = 302). Multivariate logistic regression identified independent LNM predictors in PTMC, leading to the construction of a predictive nomogram model. The model's performance was assessed through ROC analysis, calibration curve analysis, and decision curve analysis. RESULTS: Identified LNM predictors in PTMC included age, tumor maximum diameter, nodule-capsule distance, capsular contact length, bilateral suspicious lesions, absence of the lymphatic hilum, microcalcification, and sex. Especially, tumors larger than 7 mm, nodules closer to the capsule (less than 3 mm), and longer capsular contact lengths (more than 1 mm) showed higher LNM rates. The model exhibited AUCs of 0.733 and 0.771 in the training and validation cohorts respectively, alongside superior calibration and clinical utility. CONCLUSION: This study proposes and substantiates a preoperative predictive model for LNM in patients with PTMC, honing the precision of "low-risk" categorization. This model furnishes clinicians with an invaluable tool for individualized treatment approach, ensuring better management of patients who might be proposed observation or ablative options in the absence of such predictive information.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Neck Dissection , Thyroidectomy , Lymphatic Metastasis/pathology , Retrospective Studies , Lymph Nodes/pathology , Risk Factors
3.
Head Neck ; 46(8): 1975-1987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38348564

ABSTRACT

BACKGROUND: The preservation of parathyroid glands is crucial in endoscopic thyroid surgery to prevent hypocalcemia and related complications. However, current methods for identifying and protecting these glands have limitations. We propose a novel technique that has the potential to improve the safety and efficacy of endoscopic thyroid surgery. PURPOSE: Our study aims to develop a deep learning model called PTAIR 2.0 (Parathyroid gland Artificial Intelligence Recognition) to enhance parathyroid gland recognition during endoscopic thyroidectomy. We compare its performance against traditional surgeon-based identification methods. MATERIALS AND METHODS: Parathyroid tissues were annotated in 32 428 images extracted from 838 endoscopic thyroidectomy videos, forming the internal training cohort. An external validation cohort comprised 54 full-length videos. Six candidate algorithms were evaluated to select the optimal one. We assessed the model's performance in terms of initial recognition time, identification duration, and recognition rate and compared it with the performance of surgeons. RESULTS: Utilizing the YOLOX algorithm, we developed PTAIR 2.0, which demonstrated superior performance with an AP50 score of 92.1%. The YOLOX algorithm achieved a frame rate of 25.14 Hz, meeting real-time requirements. In the internal training cohort, PTAIR 2.0 achieved AP50 values of 94.1%, 98.9%, and 92.1% for parathyroid gland early prediction, identification, and ischemia alert, respectively. Additionally, in the external validation cohort, PTAIR outperformed both junior and senior surgeons in identifying and tracking parathyroid glands (p < 0.001). CONCLUSION: The AI-driven PTAIR 2.0 model significantly outperforms both senior and junior surgeons in parathyroid gland identification and ischemia alert during endoscopic thyroid surgery, offering potential for enhanced surgical precision and patient outcomes.


Subject(s)
Endoscopy , Parathyroid Glands , Thyroidectomy , Humans , Thyroidectomy/adverse effects , Thyroidectomy/methods , Endoscopy/methods , Endoscopy/adverse effects , Parathyroid Glands/surgery , Algorithms , Deep Learning , Artificial Intelligence , Hypocalcemia/prevention & control , Hypocalcemia/etiology , Female , Male
4.
Front Endocrinol (Lausanne) ; 15: 1337322, 2024.
Article in English | MEDLINE | ID: mdl-38362277

ABSTRACT

Background: Robotic assistance in thyroidectomy is a developing field that promises enhanced surgical precision and improved patient outcomes. This study investigates the impact of the da Vinci Surgical System on operative efficiency, learning curve, and postoperative outcomes in thyroid surgery. Methods: We conducted a retrospective cohort study of 104 patients who underwent robotic thyroidectomy between March 2018 and January 2022. We evaluated the learning curve using the Cumulative Sum (CUSUM) analysis and analyzed operative times, complication rates, and postoperative recovery metrics. Results: The cohort had a mean age of 36 years, predominantly female (68.3%). The average body mass index (BMI) was within the normal range. A significant reduction in operative times was observed as the series progressed, with no permanent hypoparathyroidism or recurrent laryngeal nerve injuries reported. The learning curve plateaued after the 37th case. Postoperative recovery was consistent, with no significant difference in hospital stay duration. Complications were minimal, with a noted decrease in transient vocal cord palsy as experience with the robotic system increased. Conclusion: Robotic thyroidectomy using the da Vinci system has demonstrated a significant improvement in operative efficiency without compromising safety. The learning curve is steep but manageable, and once overcome, it leads to improved surgical outcomes and high patient satisfaction. Further research with larger datasets and longer follow-up is necessary to establish the long-term benefits of robotic thyroidectomy.


Subject(s)
Robotic Surgical Procedures , Robotics , Thyroid Neoplasms , Humans , Female , Adult , Male , Retrospective Studies , Thyroid Neoplasms/surgery
5.
Laryngoscope ; 132(12): 2516-2523, 2022 12.
Article in English | MEDLINE | ID: mdl-35638245

ABSTRACT

OBJECTIVE: We aimed to establish an artificial intelligence (AI) model to identify parathyroid glands during endoscopic approaches and compare it with senior and junior surgeons' visual estimation. METHODS: A total of 1,700 images of parathyroid glands from 166 endoscopic thyroidectomy videos were labeled. Data from 20 additional full-length videos were used as an independent external cohort. The YOLO V3, Faster R-CNN, and Cascade algorithms were used for deep learning, and the optimal algorithm was selected for independent external cohort analysis. Finally, the identification rate, initial recognition time, and tracking periods of PTAIR (Artificial Intelligence model for Parathyroid gland Recognition), junior surgeons, and senior surgeons were compared. RESULTS: The Faster R-CNN algorithm showed the best balance after optimizing the hyperparameters of each algorithm and was updated as PTAIR. The precision, recall rate, and F1 score of the PTAIR were 88.7%, 92.3%, and 90.5%, respectively. In the independent external cohort, the parathyroid identification rates of PTAIR, senior surgeons, and junior surgeons were 96.9%, 87.5%, and 71.9%, respectively. In addition, PTAIR recognized parathyroid glands 3.83 s ahead of the senior surgeons (p = 0.008), with a tracking period 62.82 s longer than the senior surgeons (p = 0.006). CONCLUSIONS: PTAIR can achieve earlier identification and full-time tracing under a particular training strategy. The identification rate of PTAIR is higher than that of junior surgeons and similar to that of senior surgeons. Such systems may have utility in improving surgical outcomes and also in accelerating the education of junior surgeons. LEVEL OF EVIDENCE: 3 Laryngoscope, 132:2516-2523, 2022.


Subject(s)
Parathyroid Glands , Thyroid Gland , Humans , Parathyroid Glands/diagnostic imaging , Parathyroid Glands/surgery , Thyroid Gland/surgery , Artificial Intelligence , Thyroidectomy , Endoscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...