Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cancer Cell Int ; 24(1): 223, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943137

ABSTRACT

BACKGROUND: Multiple genetic and epigenetic regulatory mechanisms are crucial in the development and tumorigenesis process. Transcriptional regulation often involves intricate relationships and networks with post-transcriptional regulatory molecules, impacting the spatial and temporal expression of genes. However, the synergistic relationship between transcription factors and N6-methyladenosine (m6A) modification in regulating gene expression, as well as their influence on the mechanisms underlying the occurrence and progression of non-small cell lung cancer (NSCLC), requires further investigation. The present study aimed to investigate the synergistic relationship between transcription factors and m6A modification on NSCLC. METHODS: The transcription factor NFIC and its potential genes was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). The association of NFIC and its potential target genes were validated through ChIP-qPCR and dual-luciferase reporter assays. Additionally, the roles of NFIC and its potential genes in NSCLC were detected in vitro and in vivo through silencing and overexpression assays. RESULTS: Based on multi-omics data, the transcription factor NFIC was identified as a potential tumor suppressor of NSCLC. NFIC was significantly downregulated in both NSCLC tissues and cells, and when NFIC was overexpressed, the malignant phenotype and total m6A content of NSCLC cells was suppressed, while the PI3K/AKT pathway was inactivated. Additionally, we discovered that NFIC inhibits the expression of METTL3 by directly binding to its promoter region, and METTL3 regulates the expression of KAT2A, a histone acetyltransferase, by methylating the m6A site in the 3'UTR of KAT2A mRNA in NSCLC cells. Intriguingly, NFIC was also found to negatively regulate the expression of KAT2A by directly binding to its promoter region. CONCLUSIONS: Our findings demonstrated that NFIC suppresses the malignant phenotype of NSCLC cells by regulating gene expression at both the transcriptional and post-transcriptional levels. A deeper comprehension of the genetic and epigenetic regulatory mechanisms in tumorigenesis would be beneficial for the development of personalized treatment strategies.

2.
Nanotechnology ; 35(31)2024 May 13.
Article in English | MEDLINE | ID: mdl-38663370

ABSTRACT

The overuse of antibiotics currently results in the presence of various antibiotics being detected in water bodies, which poses potential risks to human health and the environment. Therefore, it is highly significant to remove antibiotics from water. In this study, we developed novel rod-like NiCo-phyllosilicate hybrid catalysts on calcined natural zeolite (NiCo@C-zeolite) via a facile one-pot process. The presence of the zeolite served as both a silicon source and a support, maintaining a high specific surface area of the NiCo@C-zeolite. Remarkably, NiCo@C-zeolite exhibited outstanding catalytic performance in antibiotic degradation under PMS activation. Within just 5 min, the degradation rate of metronidazole (MNZ) reached 96.14%, ultimately achieving a final degradation rate of 99.28%. Furthermore, we investigated the influence of catalyst dosage, PMS dosage, MNZ concentration, initial pH value, and various inorganic anions on the degradation efficiency of MNZ. The results demonstrated that NiCo@C-zeolite displayed outstanding efficacy in degrading MNZ under diverse conditions and maintained a degradation rate of 94.86% at 60 min after three consecutive cycles of degradation. Free radical quenching experiments revealed that SO•-4played a significant role in the presence of NiCo@C-zeolite-PMS system. These findings indicate that the novel rod-like NiCo-phyllosilicate hybrid catalysts had excellent performance in antibiotic degradation.


Subject(s)
Anti-Bacterial Agents , Zeolites , Zeolites/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Catalysis , Water Pollutants, Chemical/chemistry , Metronidazole/chemistry , Water Purification/methods , Silicates/chemistry
3.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675578

ABSTRACT

Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug doxorubicin (DOX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. However, peptide ligands composed of natural L-configuration amino acids have the defects of easy enzymatic degradation and insufficient biological stability. In this study, two new PDCs (LT7-SS-DOX and DT7-SS-DOX) were designed and synthesized by conjugating a transferrin receptor (TfR) peptide ligand LT7 (HAIYPRH) and its retro-inverso analog DT7 (hrpyiah), respectively, with DOX via a disulfide bond linker. Both conjugates exhibited targeted antiproliferative effects on TfR overexpressed tumor cells and little toxicity to TfR low-expressed normal cells compared with free DOX. Moreover, the DT7-SS-DOX conjugate possessed higher serum stability, more sustained reduction-triggered drug release characteristics, and stronger in vitro antiproliferative activity as compared to LT7-SS-DOX. In conclusion, the coupling of antitumor drugs with the DT7 peptide ligand can be used as a promising strategy for the further development of stable and efficient PDCs with the potential to facilitate TfR-targeted drug delivery.


Subject(s)
Antineoplastic Agents , Doxorubicin , Peptides , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Drug Delivery Systems , Drug Liberation , Ligands , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Receptors, Transferrin/metabolism
4.
Environ Sci Pollut Res Int ; 31(19): 28210-28224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532214

ABSTRACT

Iron-based catalysts are environmentally friendly, and iron minerals are abundant in the earth's crust, with great potential advantages for PMS-based advanced oxidation process applications. However, homogeneous Fe2+/PMS systems suffer from side reactions and are challenging to reuse. Therefore, developing catalysts with improved stability and activity is a long-term goal for practical Fe-based catalyst applications. In this study, we prepared Fe-HNTs nanoreactors by encapsulating a nitrogen-doped carbon layer with one-dimensional halloysite nanotubes (HNTs) using the molten salt-assisted method. Subsequently, Fe (Co, Ni) nanoclusters were anchored onto the nitrogen-doped carbon layer at a relatively low temperature (550℃), resulting in stable and uniform distribution of metal nanoclusters on the surface of HNTs carriers in the form of Fe-Nx coordination. The results showed that the dissolution of the molten salt and leaching of post-treated metal oxides generated numerous mesopores within the Fe-HNTs nanoreactor, leading to a specific surface area more than 10 times that of HNTs. This enhanced mass transfer capability facilitates rapid pollutant removal while exposing more active sites. Remarkably, Fe-HNTs adsorbed up to 97% of tetracycline within 60 min. In the Fe-HNTs/PMS system, the predominant reactive oxygen species has been shown to be 1O2, and the added tetracycline was degraded by more than 98% within 5 min. The removal of tetracycline was maintained above 96% in the presence of interfering factors such as wide pH (3-11) and inorganic anions (5 mM Cl-, HCO3-, NO3-, and SO42-). The investigated mechanism suggests that efficient degradation and interference resistance of the Fe-HNTs/PMS system is attributed to the synergistic effect between the rapid adsorption of porous structure and the non-radical (1O2)-dominated degradation pathway.


Subject(s)
Iron , Nanotubes , Tetracycline , Nanotubes/chemistry , Tetracycline/chemistry , Catalysis , Iron/chemistry , Clay/chemistry , Nickel/chemistry , Oxidation-Reduction , Cobalt/chemistry
5.
Nutrients ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474792

ABSTRACT

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Subject(s)
Calcium , Colostrum , Pregnancy , Female , Animals , Mice , Cattle , Calcium/metabolism , Colostrum/metabolism , Calcium, Dietary/metabolism , Bone and Bones/metabolism , Bone Development , Bone Density , Dietary Proteins/pharmacology
6.
Langmuir ; 40(9): 4739-4750, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373152

ABSTRACT

The degradation of organic dye from waterbodies is of great significance for clean production and environmental remediation. Herein, two porphyrin-based conjugated microporous polymers (CMPs) loaded with nanoscale zerovalent iron (named as Por-CMPs-1-2@nZVI) were successfully fabricated by Sonogashira-Hagihara coupling reactions and the liquid-phase method. The as-synthesized Por-CMPs-1-2@nZVI composites were characterized by various means of analysis, and it was confirmed that Por-CMPs-1-2 loaded with nZVI had good photocatalytic performance. Calculated by ultraviolet-visible spectrum, the band-gap energies of Por-CMPs-1@nZVI and Por-CMPs-2@nZVI were 1.45 and 1.32 eV, respectively, indicating that both can be activated by visible light. The photodegradation of organic dye experiments demonstrated that Por-CMPs-2@nZVI degraded 98.0% of 10 ppm Methylene Blue (MB) within 150 min, which is higher than that of Por-CMPs-1-2 and Por-CMPs-1@nZVI. The experiment of active substance capture and mechanism of ESR confirmed that superoxide anion and hydroxyl radical were the primary valid substances in the photodegradation process of MB. In addition, the preparation of membrane materials was shown to be a successful strategy to realize engineered scale-up production.

7.
Bioresour Technol ; 394: 130288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181999

ABSTRACT

The sulfur-doped titanium dioxide (S-TiO2) cooperated with Zirconium based on a kind of metal-organic framework (MOF-808) was successfully prepared as cathode catalyst (S-TiO2@MOF-808) of microbial fuel cell (MFC) by two-step hydrothermal reaction. The particle size was approximately 5 µm, and the spherical S-TiO2 particle was attached to the surface of MOF-808 as irregular block solid. Zr-O, C-O and O-H bond were indicated to exist in S-TiO2@MOF-808. When n (Zr4+): n(Ti4+) was 1: 5, S-TiO2@MOF-808 showed better oxygen reduction reaction (ORR). The introduction of S-TiO2 restrained the framework collapse of MOF-808, S-TiO2@MOF-808 showed much higher catalytic stability in reaction. The recombination of sulfur and TiO2 reduced the charge transfer resistance, accelerated the electron transfer rate, and improved ORR greatly. The maximum power density of S-TiO2@MOF-808-MFC was 84.05 mW/m2, about 2.17 times of S-TiO2-MFC (38.64 mW/m2). The maximum voltage of S-TiO2@MOF-808-MFC was 205 mV, and the stability was maintained for 6 d.


Subject(s)
Bioelectric Energy Sources , Metal-Organic Frameworks , Titanium , Zirconium , Electrodes , Sulfur
8.
Anal Chim Acta ; 1287: 342053, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182365

ABSTRACT

Rapid and specific detection of virulent bacterial strains is a great challenge for food safety regarding large amounts of contaminated samples. Herein, a dual-mode hydrogel array biosensor was constructed to simultaneously rapidly screen and precisely quantitatively detect virulent Escherichia coli O157:H7 (E. coli O157:H7) based on a novel DNA-modified phage probe. First, E. coli O157:H7 was incubated with alginate to form the E. coli O157:H7/hydrogel premix complex. Subsequently, hydrogel formation by cross-linking upon the addition of calcium ions and phages for E. coli O157:H7 modified with a DNA primer (phage-DNA) was added to the alginate hydrogel. The DNA on the complex could trigger rolling circle amplification (RCA) to form a phage probe containing a long-chain DNA skeleton (phage@RCA-DNA). The RCA-DNA was then hybridized with the complementary DNA (cDNA) to form double-stranded DNA fragments (phage@RCA-dsDNA), which could be stained by the SYBR Green dye to emit visual green fluorescence (FL) and determined by a smartphone for rapid screening. Meanwhile, the unreacted cDNA in the supernatant could be quantitatively detected by microfluidic chip electrophoresis (MCE). The signal decrement was also proportional to the bacterial concentration. The detection limit values of E. coli O157:H7 were 50 CFU mL-1 by the FL signal and 6 CFU mL-1 by the MCE signal. The two results could be mutually corrected to decrease the false-positive results. This assay was also employed to detect virulent Salmonella Typhimurium (S. Typhimurium) using the corresponding S. Typhimurium phage@RCA-DNA probe. All these results demonstrated that the universal bioassay was suitable for simultaneous rapid screening and precisely quantitative detection of virulent bacterial strains.


Subject(s)
Bacteriophages , Escherichia coli O157 , DNA, Complementary , Hydrogels , Microfluidics , DNA Probes , Alginates , Coloring Agents , Electrophoresis
9.
Phys Rev Lett ; 131(21): 210603, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072603

ABSTRACT

Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.1 superconducting quantum processor. An average of 0.8983±0.0002 logical fidelity at different logical states with distance three is achieved, taking into account both state preparation and measurement errors. In particular, the logical magic states |A^{π/4}⟩_{L}, |H⟩_{L}, and |T⟩_{L} are prepared nondestructively with logical fidelities of 0.8771±0.0009, 0.9090±0.0009, and 0.8890±0.0010, respectively, which are higher than the state distillation protocol threshold, 0.859 (for H-type magic state) and 0.827 (for T-type magic state). Our work provides a viable and efficient avenue for generating high-fidelity raw logical magic states, which is essential for realizing non-Clifford logical gates in the surface code.

10.
Int Wound J ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37904719

ABSTRACT

The purpose of the meta-analysis was to evaluate and compare the surgical site infection (SSI) risk factors in patients with colorectal cancer (CC). The results of this meta-analysis were analysed, and the odds ratio (OR) and mean difference (MD) with 95% confidence intervals (CIs) were calculated using dichotomous or contentious random or fixed-effect models. For the current meta-analysis, 23 examinations spanning from 2001 to 2023 were included, encompassing 89 859 cases of CC. Clean-contaminated surgical site wounds had significantly lower infections (OR, 0.36; 95% CI, 0.20-0.64, p < 0.001) compared to contaminated surgical site wounds in patients with CCs. Males had significantly higher SSIs (OR, 1.18; 95% CI, 1.12-1.24, p < 0.001) compared to females in patients with CC. American Society of Anesthesiology score ≥3 h had a significantly higher SSI (OR, 1.42; 95% CI, 1.18-1.71, p < 0.001) compared to <3 score in patients with CCs. Body mass index ≥25 had significantly higher SSIs (OR, 1.54; 95% CI, 1.11-2.14, p = 0.01) compared to <25 in patients with CCs. The presence of stoma creation had a significantly higher SSI rate (OR, 2.28; 95% CI, 1.37-3.79, p = 0.001) compared to its absence in patients with CC. Laparoscopic surgery had significantly lower SSIs (OR, 0.68; 95% CI, 0.59-0.78, p < 0.001) compared to open surgery in patients with CC. The presence of diabetes mellitus had a significantly higher SSI rate (OR, 1.24; 95% CI, 1.15-1.33, p < 0.001) compared to its absence in patients with CCs. No significant difference was found in SSI rate in patients with CCs between <3 and ≥3 h of operative time (OR, 1.07; 95% CI, 0.75-1.51, p = 0.72), between the presence and absence of blood transfusion (OR, 1.60; 95% CI, 0.69-3.66, p = 0.27) and between the presence and absence of previous laparotomies (OR, 1.47; 95% CI, 0.93-2.32, p = 0.10). The examined data revealed that contaminated wounds, male sex, an American Society of Anesthesiology score ≥3 h, a body mass index ≥25, stoma creation, open surgery and diabetes mellitus are all risk factors for SSIs in patients with CC. However, operative time, blood transfusion and previous laparotomies were not found to be risk factors for SSIs in patients with CC. However, given that several comparisons had a small number of chosen research, consideration should be given to their values.

11.
Int J Womens Health ; 15: 1063-1075, 2023.
Article in English | MEDLINE | ID: mdl-37795195

ABSTRACT

Background: Despite the rising incidence rate of granulomatous lobular mastitis (GLM), uncertainties persist about its etiologic and predisposing factors to guide clinical treatment and early prevention. The objective of this study is to explore the predisposing factors for GLM. Patients and methods: This case-control study was conducted from 2018 to 2021 at Beijing Hospital of Traditional Chinese Medicine, Capital Medical University. Patients with GLM (cases) were matched with healthy examinees (controls) in a 1:1 ratio according to gender and living area. We analyzed their demographic features and investigated 75 factors that may be relevant to GLM using a standard questionnaire. Univariate and multivariable binary conditional logistic regression analyses were used to compare the differences between the two groups and evaluate the predisposing factors that may induce GLM. Results: There were 594 female GLM patients and 594 matched controls included in the study. The average age of the cases was 32.78 years (mainly 20 to 40). The incidence was high within five years after childbirth, and lesions were mainly in the unilateral breast. Univariate and multivariable conditional logistic regression analyses obtained six relevant factors and six high-risk factors. The six relevant factors included age, marriage, emotional abnormality, high prolactin, psychiatric drug intake, and sex hormone intake. Additionally, the independent high-risk factors for GLM included gestation, nipple invagination, blunt trauma, non-iatrogenic massage, lactation disorder, and nipple discharge (odds ratio (OR)=17.378, 8.518, 4.887, 3.116, 2.522, 1.685, P<0.05). Menopause was an independent protective factor (OR=0.249, P<0.05). Conclusion: The factors that increase milk and secretion production in the mammary duct are the main risk factors of GLM, especially when the nipples are invaginated. These factors can obstruct the duct and induce inflammation. Additionally, hormonal disorders, extrinsic trauma, and emotional abnormalities can accelerate the occurrence of GLM.

12.
Front Genet ; 14: 1223243, 2023.
Article in English | MEDLINE | ID: mdl-37564869

ABSTRACT

Background: Lactate, as an essential clinical evaluation index of septic shock, is crucial in the incidence and progression of septic shock. This study aims to investigate the differential expression, regulatory relationship, clinical diagnostic efficacy, and immune infiltration of lactate metabolism-related genes (LMGs) in septic shock. Methods: Two sepsis shock datasets (GSE26440 and GSE131761) were screened from the GEO database, and the common differentially expressed genes (DEGs) of the two datasets were screened out. LMGs were selected from the GeneCards database, and lactate metabolism-related DEGs (LMDEGs) were determined by integrating DEGs and LMGs. Protein-protein interaction networks, mRNA-miRNA, mRNA-RBP, and mRNA-TF interaction networks were constructed using STRING, miRDB, ENCORI, and CHIPBase databases, respectively. Receiver operating characteristic (ROC) curves were constructed for each of the LMDEGs to evaluate the diagnostic efficacy of the expression changes in relation to septic shock. Finally, immune infiltration analysis was performed using ssGSEA and CIBERSORT. Results: This study identified 10 LMDEGs, including LDHB, STAT3, LDHA, GSR, FOXM1, PDP1, GCDH, GCKR, ABCC1, and CDKN3. Enrichment analysis revealed that DEGs were significantly enriched in pathways such as pyruvate metabolism, hypoxia pathway, and immune-inflammatory pathways. PPI networks based on LMDEGs, as well as 148 pairs of mRNA-miRNA interactions, 243 pairs of mRNA-RBP interactions, and 119 pairs of mRNA-TF interactions were established. ROC curves of eight LMDEGs (LDHA, GSR, STAT3, CDKN3, FOXM1, GCKR, PDP1, and LDHB) with consistent expression patterns in two datasets had an area under the curve (AUC) ranging from 0.662 to 0.889. The results of ssGSEA and CIBERSORT both showed significant differences in the infiltration of various immune cells, including CD8 T cells, T regulatory cells, and natural killer cells, and LMDEGs such as STAT3, LDHB, LDHA, PDP1, GSR, FOXM1, and CDKN3 were significantly associated with various immune cells. Conclusion: The LMDEGs are significantly associated with the immune-inflammatory response in septic shock and have a certain diagnostic accuracy for septic shock.

13.
Iran J Public Health ; 52(5): 880-891, 2023 May.
Article in English | MEDLINE | ID: mdl-37484721

ABSTRACT

Background: While people's living standards are improving, the incidence of chronic diseases due to a lack of exercise is increasing. Complex health conditions (e.g., metabolic syndrome) are becoming common, and means to lower their incidence are essential. Methods: This study systematically reviewed the literature and performed a meta-analysis on the effects of Baduanjin exercise on metabolic syndrome-related factors. Using four English databases and three Chinese databases, randomized controlled trials on the effects of Baduanjin exercise on metabolic syndrome were identified. We analyzed whether Baduanjin could alleviate various metabolic syndrome indicators according to our selection guidelines. Results: We found that Baduanjin exercise had positive effects on blood pressure (systolic blood pressure: mean difference (MD)=-6.39; 95% confidence interval (CI): -9.86 to -2.92; I2=12%; diastolic blood pressure: MD=-2.86; 95% CI: -5.96 to -0.23; I2=35%; P=0.07) and total cholesterol (standardized mean (SMD)= -0.55; 95% CI: -1.11 to 0.02; I2=86%; P=0.06), triglyceride (SMD=-0.29; 95% CI: -1.13 to - 0.56; I2=94%; P<0.51), and low-density cholesterol (SMD =-0.33; 95% CI: -0.52 to -0.14; I2=0%; P<0.0007) levels. Conclusion: This evidence shows that Baduanjin exercise provides beneficial effects by improving metabolic syndrome and cardiovascular disease in adults. This suggests that Baduanjin exercise could be an effective alternative or complementary approach to conventional treatments for adults with metabolic problems. Additionally, these findings suggest that more rigorous randomized control trials are needed in the future.

14.
Nature ; 619(7971): 738-742, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438533

ABSTRACT

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

15.
Front Microbiol ; 14: 1175206, 2023.
Article in English | MEDLINE | ID: mdl-37138612

ABSTRACT

Introduction: Granulomatous mastitis (GM) is a chronic inflammatory breast disease. In recent years, the role of Corynebacterium in GM onset has received more and more attention. This study aims to detect the dominant bacterium in GM patients and analyze the association between clinical characteristics and infectious factors. Methods: In this study, 88 samples from 44 GM patients, six acute lactation mastitis (ALM) patients, and 25 non-inflammatory breast disease (NIB) patients were divided into a GM pus group, a GM tissue group, an ALM pus group, and a NIB tissue group; then, 16S ribosomal DNA sequencing was used to explore their microbiota. The clinical data of all 44 GM patients were also retrospectively collected and analyzed to determine their relationship with infection. Results: The median age of the 44 GM patients was 33 years, and 88.6% of patients had primary-onset cases, while 11.4% were recurrences; additionally, 89.5% of patients were postpartum and 10.5% were nulliparous. The serum prolactin level was abnormal in nine patients (24.3%). Samples from 15 GM patients (34.1%) had a Corynebacterium abundance of >1% (1.08-80.08%), with eight (53.3%) displaying an abundance of >10%. Corynebacterium was the only genus with significant differences between the GM pus group and the other three groups (p < 0.05). Corynebacterium kroppenstedtii was the predominant Corynebacterium species. Among clinical characteristics, a statistical difference in breast abscess formation was observed according to Corynebacterium abundance in Corynebacterium-positive and- negative patients (p < 0.05). Discussion: This study explored the relationship between Corynebacterium infection and GM, compared the clinical characteristics between Corynebacterium-positive and- negative patients, and provided support for the role of Corynebacterium species-in particular, C. kroppenstedtii-in the pathogenesis of GM. The detection of Corynebacterium can predict GM onset, especially in patients with high prolactin levels or a history of recent lactation.

16.
Sci Bull (Beijing) ; 68(9): 906-912, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085397

ABSTRACT

Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.

17.
J Colloid Interface Sci ; 636: 291-304, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36638569

ABSTRACT

The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.

18.
Comput Methods Programs Biomed ; 229: 107306, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36580822

ABSTRACT

BACKGROUND AND OBJECTIVE: Fundus fluorescein angiography (FFA) is widely used in clinical ophthalmic diagnosis and treatment with the requirement of adverse fluorescent dyes injection. Recently, many deep Convolutional Neural Network(CNN)-based methods have been proposed to estimate FFA from color fundus (CF) images to eliminate the use of adverse fluorescent dyes. However, the robustness of these methods is affected by pathological changes. METHOD: In this work, we present a CNN-based approach, lesion-aware generative adversarial networks (LA-GAN), to enhance the visual effect of lesion characteristics in the generated FFA images. First, we lead the generator notice lesion information by joint learning with lesion region segmentation. A new hierarchical correlation multi-task framework for high-resolution images is designed. Second, to enhance the visual contrast between normal regions and lesion regions, a newly designed region-level adversarial loss is used rather than the image-level adversarial loss. The code is publicly available at: https://github.com/nicetomeetu21/LA-GAN. RESULTS: The effectiveness of LA-Net has been verified in data with branch retinal vein occlusion. The proposed model reported as measures of generation performance a mean structural similarity (SSIM) of 0.536, mean learned perceptual image patch similarity (LPIPS) 0.312, outperforming other FFA generation and general image generation methods. Further, due to the proposed multi-task learning framework, the lesion-region segmentation performance was further reported as the mean Dice increased from 0.714 to 0.797 and the mean accuracy increased from 0.873 to 0.905, outperforming general single-task image segmentation methods. CONCLUSIONS: The results show that the visual effect of lesion characteristics can be improved by employing the region-level adversarial loss and the hierarchical correlation multi-task framework respectively. Based on the results of comparison with the state-of-the-art methods, LA-GAN is not only effective for CF-to-FFA translation, but also effective for lesion-region segmentation. Thus, it may be used for various image translation and lesion segmentation tasks in future research.


Subject(s)
Fluorescent Dyes , Image Processing, Computer-Assisted , Fluorescein Angiography , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Fundus Oculi
19.
J Colloid Interface Sci ; 629(Pt B): 1061-1067, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36272274

ABSTRACT

The undesirable phase transformation of Mn-based P2-layered oxide cathodes is a tremendous challenge in commercializing Mn-based oxide cathodes for sodium-ion batteries. In this work, Na0.67MnO2 cathode with stable P2-type structure was successfully synthesized by modulating its coordination numbers to suppress the preferred orientation growth of (001) crystal plane, which was realized to maintain a stable P2-type structure in the whole state of charging and discharging. Specifically, designing Mn2+ six coordination sites to lower the high surface energy of (001) crystal plane is an effective way to reduce nucleation rates, which leads to the production of few grain boundaries and the suppression of layer-to-layer stacking in the crystal growth stage. Due to their fewer grain boundaries and skeleton structure with layer-to-layer stacking, the interlaminar stress and intragranular fatigue cracks can be alleviated in the long-life cycling performance of Na0.67MnO2 cathode. Na0.67MnO2 cathodes derived from the precursor of Mn2+ six coordination sites (C-Na0.67MnO2) have more exposed {010} crystal face and enlarged sodium-ion diffusion channels and structure integrity compared to Na0.67MnO2 cathode prepared by the precursor of Mn2+ four coordination sites (O-Na0.67MnO2). Therefore, C-Na0.67MnO2 cathode delivers an initial capacity of 106.8 mAh/g and has excellent capacity retention of 94.8 % after 150 cycles at 80 mAh/g. The rational design strategy endows Mn-based P2-layered oxide cathodes with stable sodium-ion diffusion channels and lamellar structure.

20.
Sci Bull (Beijing) ; 67(3): 240-245, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-36546072

ABSTRACT

To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles, and fidelity of FXEB=(3.66±0.345)×10-4. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature 574, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about 4.8×104 years), while Zuchongzhi 2.1 only takes about 4.2 h, thereby significantly enhancing the quantum computational advantage.

SELECTION OF CITATIONS
SEARCH DETAIL
...