Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
Ultrasonics ; 142: 107379, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38981172

ABSTRACT

Accurate and real-time separation of blood signal from clutter and noise signals is a critical step in clinical non-contrast ultrasound microvascular imaging. Despite the widespread adoption of singular value decomposition (SVD) and robust principal component analysis (RPCA) for clutter filtering and noise suppression, the SVD's sensitivity to threshold selection, along with the RPCA's limitations in undersampling conditions and heavy computational burden often result in suboptimal performance in complex clinical applications. To address those challenges, this study presents a novel low-rank prior-based fast RPCA (LP-fRPCA) approach to enhance the adaptability and robustness of clutter filtering and noise suppression with reduced computational cost. A low-rank prior constraint is integrated into the non-convex RPCA model to achieve a robust and efficient approximation of clutter subspace, while an accelerated alternating projection iterative algorithm is developed to improve convergence speed and computational efficiency. The performance of the LP-fRPCA method was evaluated against SVD with a tissue/blood threshold (SVD1), SVD with both tissue/blood and blood/noise thresholds (SVD2), and the classical RPCA based on the alternating direction method of multipliers algorithm through phantom and in vivo non-contrast experiments on rabbit kidneys. In the slow flow phantom experiment of 0.2 mm/s, LP-fRPCA achieved an average increase in contrast ratio (CR) of 10.68 dB, 9.37 dB, and 8.66 dB compared to SVD1, SVD2, and RPCA, respectively. In the in vivo rabbit kidney experiment, the power Doppler results demonstrate that the LP-fRPCA method achieved a superior balance in the trade-off between insufficient clutter filtering and excessive suppression of blood flow. Additionally, LP-fRPCA significantly reduced the runtime of RPCA by up to 94-fold. Consequently, the LP-fRPCA method promises to be a potential tool for clinical non-contrast ultrasound microvascular imaging.

2.
Front Neurol ; 15: 1389950, 2024.
Article in English | MEDLINE | ID: mdl-38846042

ABSTRACT

Background and objective: Current data on the optimal treatment modality for ruptured anterior communicating artery (AComA) aneurysms are limited. We conducted this multicenter retrospective study to evaluate the safety and clinical outcomes of endovascular treatment (EVT) and microsurgical clipping (MC) for the treatment of ruptured AComA patients. Methods: Patients with ruptured AComA aneurysms were screened from the Chinese Multicenter Cerebral Aneurysm Database. Propensity score matching (PSM) was used to adjust for baseline characteristic imbalances between the EVT and MC groups. The safety outcomes included total procedural complications, procedure-related morbidity/death and remedial procedure for complication. The primary clinical outcome was 2-year functional independence measured by the modified Rankin scale (mRS) score. Results: The analysis included 893 patients with ruptured AComA aneurysms (EVT: 549; MC: 346). PSM yielded 275 pairs of patients in the EVT and MC cohorts for comparison. Decompressive craniectomy being more prevalent in the MC group (19.3% vs. 1.5%, p < 0.001). Safety data revealed a lower rate of total procedural complications (odds ratio [OR] = 0.62, 95% CI 0.39-0.99; p = 0.044) in the EVT group and similar rates of procedure-related morbidity/death (OR = 0.91, 95% CI 0.48-1.73; p = 0.880) and remedial procedure for complication (OR = 1.35, 95% CI 0.51-3.69, p = 0.657) between the groups. Compared with that of MC patients, EVT patients had a greater likelihood of functional independence (mRS score 0-2) at discharge (OR = 1.68, 95% CI 1.14-2.50; p = 0.008) and at 2 years (OR = 1.89, 95% CI 1.20-3.00; p = 0.005), a lower incidence of 2-year all-cause mortality (OR = 0.54, 95% CI 0.31-0.93; p = 0.023) and a similar rate of retreatment (OR = 1.00, 95% CI 0.23-4.40; p = 1.000). Conclusion: Clinical outcomes after treatment for ruptured AComA aneurysms appear to be superior to those after treatment with MC, with fewer overall procedure-related complications and no increase in the retreatment rate. Additional studies in other countries are needed to verify these findings.

3.
Int J Clin Oncol ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853186

ABSTRACT

BACKGROUND: The late-stage diagnosis and distant metastasis of oral squamous cell carcinoma (OSCC) remain a huge challenge to clinical treatment for OSCC. During the past decades, targeting glycolysis-inducing factors becomes an attractive new strategy in OSCC therapies. METHODS: OSCC cells were stimulated with hypoxia or transfected with agomir-199a-5p, antagomir-199a-5p, and siRNA for HIF1A, cell proliferation was detected by CCK-8 assay; HIF1α, GLUT1, HK2 and LDHA expression levels were examined with western blot; miR-199 expression was determined with RT-PCR; cell migratory and invasive abilities were examined using wound healing and transwell assays; the lactate and glucose in culture medium were also determined. Luciferase assay or CHIP assay was applied for confirm the binding between miR-199a-5p and HIF1A 3'UTR, or between HIF1α and miR-199a promoter. RESULTS: HIF1α showed to be abnormally up-regulated, and miR-199a-5p showed to be abnormally down-regulated within OSCC under hypoxia. Hypoxia considerably enhanced OSCC cell proliferation, glycolysis, migratory ability, and invasive ability. MiR-199a-5p bound to HIF1A 3'-UTR and suppressed HIF1A expression; HIF1α targeted miR-199a-5p promoter region and downregulated miR-199a-5p expression. Under hypoxia, miR-199a-5p overexpression significantly repressed HIF1α up-regulation inresponse to hypoxia, OSCC cell proliferation, glycolysis, migratory ability, and invasive ability. CONCLUSION: miR-199a-5p and HIF1α form a dual-regulatory axis in OSCC cells; the miR-199a-5p/HIF1α dual-regulatory axis contributes to hypoxia-induced aggressive OSCC phenotypes.

4.
Eur J Pharmacol ; 976: 176665, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38797312

ABSTRACT

OBJECTIVE: Sepsis is frequently complicated by neuroinflammation. Gibberellic acid (GA3) is recognized for its anti-inflammatory properties. In this study, our objective was to investigate whether GA3 could alleviate Nuclear factor-kappa B (NF-κB) -dependent inflammatory stress in sepsis-induced neuroinflammation. METHODS: C57BL/6 J mice were administered 10 mg/kg lipopolysaccharide (LPS) to induce sepsis. BV2 cells were pre-incubated with GA3 and subjected lipopolysaccharide stimulation to replicate the inflammatory microglia during sepsis. Subsequently, we assessed the release of IL-6, TNF-α, and IL-1ß, along with the expression of Zbtb16, NF-κB, and IκB. To investigate whether any observed anti-inflammatory effects of GA3 were mediated through a Zbtb16-dependent mechanism, Zbtb16 was silenced using siRNA. RESULTS: GA3 improved the survival of sepsis mice and alleviated post-sepsis cognitive impairment. Additionally, GA3 attenuated microglial M1 activation (pro-inflammatory phenotype), inflammation, and neuronal damage in the brain. Moreover, GA3 inhibited the release of TNF-α, IL-6, and IL-1ß in microglia stimulated with LPS. The NF-κB signaling pathway emerged as one of the key molecular pathways associated with the impact of GA3 on LPS-stimulated microglia. Lastly, GA3 upregulated Zbtb16 expression in microglia that had been downregulated by LPS. The inhibitory effects of GA3 on microglial M1 activation were partially reversed through siRNA knockdown of Zbtb16. CONCLUSIONS: Pre-incubation of microglia with GA3 led to the upregulation of the NF-κB regulator, Zbtb16. This process counteracted LPS-induced microglial M1 activation, resulting in an anti-inflammatory effect upon subsequent LPS stimulation.


Subject(s)
Gibberellins , Lipopolysaccharides , Mice, Inbred C57BL , Microglia , NF-kappa B , Sepsis , Animals , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Mice , NF-kappa B/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Gibberellins/pharmacology , Neuroinflammatory Diseases/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Signal Transduction/drug effects , Cell Line , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism
5.
Opt Lett ; 49(9): 2293-2296, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691702

ABSTRACT

We experimentally realized a high-speed nested anti-resonant nodeless fiber (NANF) transmission with the assistance of the polarization division multiplexing (PDM) and probabilistic shaping (PS) technology. In this system, a low-complexity multiple-input multiple-output (MIMO) real-valued equalizer (RVE) is integrated with decision-directed carrier phase estimation (DDCPE), which is robust against the IQ cross talk and a tiny phase disturbance between PS symbols. By using the proposed MIMO-RVEDDCPE, the 60-Gbaud PDM-PS-256QAM signal has been delivered through 2-km NANF satisfying the soft-decision forward error correction (SD-FEC) threshold.

6.
Opt Lett ; 49(9): 2357-2360, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691718

ABSTRACT

We propose an optical dual-single-sideband (dual-SSB) modulated 16384-quadrature amplitude modulation (QAM) photonic vector millimeter-wave (mm-wave) signal generation scheme based on delta-sigma modulation (DSM). With the aid of the DSM, the severe nonlinear distortion of envelope detection for high-order QAM modulation signals in wireless communication can be effectively resolved. For the validation of our proposed scheme, we experimentally demonstrate the generation of a 40 GHz 16384-QAM orthogonal frequency division multiplexing (OFDM) photonic vector mm-wave signal and transmission over a 25-km standard single-mode fiber (SSMF), and a 1-m wireless link with the bit error ratio (BER) reaches the hard-decision forward-error-correction (HD-FEC) threshold of 3.8 × 10-3.

7.
Curr Res Toxicol ; 6: 100171, 2024.
Article in English | MEDLINE | ID: mdl-38765763

ABSTRACT

Nicotinamide mononucleotide (NMN) is an intermediate in biosynthesis pathway of Nicotinamide adenine dinucleotide (NAD+), an essential cofactor in all living cells involved in fundamental biological processes. Evidence stemming from recent studies have unveiled numerous roles of NAD+ metabolism on aging, longevity, delaying the progression of age-related diseases. A three-study genetic toxicity (genetox) battery (bacterial mutagenesis, in vitro cytogenetics, and in vivo mammalian test) is usually required to confirm safety of a new dietary ingredient and this study showed the data from in vivo mutagenicity test for the first time. The acute oral LD50 of NMN was greater than 2000 mg/kg body weight with 5000 mg/kg body weight as LD50 cut-off value and was classified under "Category 5 or Unclassified" as per Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Based on 90 days repeated dose toxicity test the NOAEL was considered to be NLT 800 mg NMN/kg body weight in Wistar rats. The bacterial reverse mutation test, the in vitro and in vivo chromosomal aberration test, found NMN to be non-mutagenic. In the mammalian bone marrow chromosomal aberration test, it was concluded that NMN is non clastogenic at and up to 2,000 mg/kg body weight in all the animals tested to confirm safety of a new dietary ingredient and this study showed the data from in vivo mutagenicity test for the first time.

8.
Opt Lett ; 49(10): 2801-2804, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748165

ABSTRACT

We propose a non-uniform-quantization digital-analog radio-over-fiber (NUQ-DA-RoF) scheme based on an advanced K-means NUQ algorithm and demonstrate it experimentally in a 2-m 300-GHz photonics-aided wireless fronthaul system. Results show that the NUQ-DA-RoF scheme achieves a SNR gain of ∼1.9 dB compared to the uniform-quantization DA-RoF (UQ-DA-RoF) at an equivalent Common Public Radio Interface equivalent data rate (CPRI-EDR). Remarkably, the NUQ-DA-RoF scheme exhibits an ∼1.6-dB power sensitivity enhancement over the UQ-DA-RoF at the 256-QAM SNR threshold. These findings highlight the advantages of the NUQ-DA-RoF scheme over UQ-DA-RoF in terms of power budget and SNR improvement, suggesting promising prospects for future radio access networks and wireless fronthaul.

9.
Opt Lett ; 49(7): 1644-1647, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560826

ABSTRACT

In this Letter, we propose a dual-polarized coherent millimeter-wave system based on differential delta-sigma modulation (D-DSM) intended for long-distance wireless transmission in the W-band. The proposed system can transmit polarization-division-multiplexed (PDM) D-DSM signals with modulation orders up to 4194304QAM over a wireless channel for 4.6 km at a signal baud rate of 20 G. After 4.6 km of wireless transmission, we successfully achieve a bit error rate (BER) lower than the hard-decision forward error correction (HD-FEC) of 3.8 × 10-3 for 34.51 Gbit/s PDM-524288QAM and a BER lower than the soft-decision forward error correction (SD-FEC) of 4.2 × 10-2 for 32.23 Gbit/s PDM-4194304QAM.

10.
Metabolites ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38668370

ABSTRACT

The use of different rootstocks has a significant effect on the content of flavor components and overall fruit quality. However, little information is available about the metabolic basis of the nutritional value of citrus plants. In this study, UPLC-MS/MS (ultra-performance liquid chromatography-tandem mass spectrometry) was performed to analyze the metabolites of three late-maturing hybrid mandarin varieties ('Gold Nugget', 'Tango' and 'Orah') grafted on four rootstocks ('Trifoliate orange', 'Carrizo citrange', 'Red tangerine' and 'Ziyang Xiangcheng'). A total of 1006 metabolites were identified through OPLS-DA (Orthogonal Partial Least Squares-Discriminant Analysis) analysis. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed the most critical pathways among the different pathways associated with genes grafted on the four rootstocks that were differentially activated, including tryptophan metabolism and sphingolipid metabolism in 'Gold Nugget'; tryptophan metabolism, phenylpropanoid biosynthesis and sphingolipid metabolism in 'Tango'; and pantothenate and CoA biosynthesis- and photosynthesis-related biosynthesis in 'Orah'. A considerable difference between the different rootstocks was also observed in the accumulation of lipids, phenolic acids and flavonoids; further analysis revealed that the rootstocks regulated specific metabolites, including deacetylnomylinic acid, sudachinoid A, amoenin evodol, rutaevin, cyclo (phenylalanine-glutamic acid), cyclo (proline-phenylalanine), 2-hydroxyisocaproic acid, and 2-hydroxy-3-phenylpropanoic acid. The results of this study provide a useful foundation for further investigation of rootstock selection for late-maturation hybrid mandarin varieties.

11.
Elife ; 122024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686992

ABSTRACT

Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.


Subject(s)
CRISPR-Cas Systems , Neurons , Animals , Neurons/metabolism , Neurons/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Connectome
12.
FASEB J ; 38(7): e23583, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38551634

ABSTRACT

We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-ß1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.


Subject(s)
Acute Kidney Injury , Histones , Animals , Mice , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Cell Proliferation , Histones/metabolism , Kidney/metabolism , Phosphorylation
13.
J Ethnopharmacol ; 328: 118091, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38521427

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tianma-Gouteng granules (TGG) is a traditional Chinese medicine (TCM) compound that was first recorded by modern medical practitioner Hu Guangci in "New Meaning of the Treatment of Miscellaneous Diseases in Traditional Chinese Medicine". It is widely used to treat hypertensive vertigo, headache and insomnia. AIM OF STUDY: To investigate the antihypertensive effect of TGG and explore its mechanism. MATERIALS AND METHODS: Spontaneously hypertensive rats (SHR) were prepared a model of the ascendant hyperactivity of liver yang syndrome (AHLYS), blood pressure and general state of rats were recorded. A series of experiments were performed by enzyme-linked immunosorbent assay (ELISA), ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), 16S rRNA sequencing, real-time fluorescence quantitative PCR (RT-qPCR), and enzymatic colorimetry. RESULTS: TGG can effectively lower blood pressure and improve related symptoms. TGG significantly reduced the levels of IL-1ß, IL-6, TNF-α, Renin and AngII. A total of 17 differential metabolites were found in plasma, with the two most potent metabolic pathways being glycerophospholipid metabolism and primary bile acid biosynthesis. After TGG intervention, 7 metabolite levels decreased and 10 metabolite levels increased. TGG significantly increased the relative abundance of Desulfovibio, Lachnoclostridium, Turicibacter, and decreased the relative abundance of Alluobaculum and Monoglobu. TGG also downregulated Farnesoid X Receptor (FXR) and Fibroblast Growth Factor 15 (FGF15) levels in the liver and ileum, upregulated Cholesterol 7α-hydroxylase (CYP7A1) levels, and regulated total bile acid (TBA) levels. CONCLUSION: TGG can regulate bile acid metabolism through liver-gut axis, interfere with related intestinal flora and plasma metabolites, decrease blood pressure, and positively influence the pathologic process of SHR with AHLYS. When translating animal microbiota findings to humans, validation studies are essential to confirm reliability and applicability, particularly through empirical human research.


Subject(s)
Bile Acids and Salts , Cholesterol 7-alpha-Hydroxylase , Rats , Humans , Animals , Bile Acids and Salts/metabolism , Blood Pressure , Cholesterol 7-alpha-Hydroxylase/metabolism , Fibroblast Growth Factors/metabolism , RNA, Ribosomal, 16S/metabolism , Reproducibility of Results , Liver/metabolism
14.
Ultrasonics ; 138: 107262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330769

ABSTRACT

Cerebral diseases, such as brain tumors, are intricately linked to the mechanical properties of brain tissues. Estimating the mechanical properties of brain tumors using transcranial ultrasound is a promising approach. However, the complexity of cranial features introduces challenges, such as ultrasound attenuation and interference from multidirectional transcranial shear waves induced by impact vibrations. To address these issues, this study proposes a transcranial ultrasound estimation method assisted by transcranial shear vibrations. Transcranial vibrations apply shear forces on the parietal bone, inducing unidirectional transcranial shear waves within brain tissue, as validated through simulations. Shear waves at different frequencies were captured via transcranial ultrasound, which were used to assess the viscoelasticity and fluidity of brain tumors. Transcranial experimental validations were conducted in 3D-printed models with tumor phantoms and ex vivo animal tumors. Vibration safety assessments were also performed. The results demonstrate that transcranial ultrasound can detect micron displacements induced by transcranial shear waves. In phantom and ex vivo animal experiments, speed distribution maps were employed to determine the size and location of one or two tumors enclosed in the skull model. The results revealed that the proposed approach could detect tumors with a minimum diameter of 0.8 cm and an inter-tumor distance of 0.8 cm. Notably, significant differences in viscoelasticity and fluidity between normal brain tissue and brain tumors were found (p<0.001). The maximum assessment errors for the elasticity, viscosity, and fluidity using transcranial ultrasound were 11.90%, 4.82%, and 0.73%, respectively, indicating that fluidity was more robust than viscoelasticity. The maximum accelerations of the skull were only 3.21 ms-2.


Subject(s)
Brain Neoplasms , Elasticity Imaging Techniques , Animals , Elasticity Imaging Techniques/methods , Viscosity , Ultrasonography , Elasticity , Phantoms, Imaging , Brain Neoplasms/diagnostic imaging
15.
Ultrasonics ; 138: 107244, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237398

ABSTRACT

Fractional flow has been proposed for quantifying the degree of functional stenosis in cerebral arteries. Herein, subharmonic aided pressure estimation (SHAPE) combined with plane wave (PW) transmission was employed to noninvasively estimate the pressure distribution and fractional flow in the middle cerebral artery (MCA) in vitro. Consequently, the effects of incident sound pressure (peak negative pressures of 86-653 kPa), pulse repetition frequency (PRF), number of pulses, and blood flow rate on the subharmonic pressure relationship were investigated. The radio frequency data were stored and beamformed offline, and the subharmonic amplitude over a 0.4 MHz bandwidth was extracted using a 12-cycle PW at 4 MHz. The optimal incident sound pressure was 217 kPa without skull (sensitivity = 0.09 dB/mmHg; r2 = 0.997) and 410 kPa with skull (median sensitivity = 0.06 dB/mmHg; median r2 = 0.981). The optimal PRF was 500 Hz, as this value affords the highest sensitivity (0.09 dB/mmHg; r2 = 0.976) and temporal resolution. In addition, the blood flow rate exhibited a lesser effect on the subharmonic pressure relationship in our experimental setup. Using the optimized parameters, the blood pressure distribution and fractional flow (FFs) were measured. As such, the FFs value was in high agreement with the value measured using the pressure sensor (FFm). The mean ± standard deviations of the FF difference (FFm - FFs) were 0.03 ± 0.06 without skull and 0.01 ± 0.05 with skull.


Subject(s)
Microbubbles , Middle Cerebral Artery , Middle Cerebral Artery/diagnostic imaging , Phantoms, Imaging , Contrast Media , Ultrasonography
16.
Skeletal Radiol ; 53(7): 1389-1397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38289532

ABSTRACT

OBJECTIVE: The aim of our study is to develop and validate a radiomics model based on ultrasound image features for predicting carpal tunnel syndrome (CTS) severity. METHODS: This retrospective study included 237 CTS hands (106 for mild symptom, 68 for moderate symptom and 63 for severe symptom). There were no statistically significant differences among the three groups in terms of age, gender, race, etc. The data set was randomly divided into a training set and a test set in a ratio of 7:3. Firstly, a senior musculoskeletal ultrasound expert measures the cross-sectional area of median nerve (MN) at the scaphoid-pisiform level. Subsequently, a recursive feature elimination (RFE) method was used to identify the most discriminative radiomic features of each MN at the entrance of the carpal tunnel. Eventually, a random forest model was employed to classify the selected features for prediction. To evaluate the performance of the model, the confusion matrix, receiver operating characteristic (ROC) curves, and F1 values were calculated and plotted correspondingly. RESULTS: The prediction capability of the radiomics model was significantly better than that of ultrasound measurements when 10 robust features were selected. The training set performed perfect classification with 100% accuracy for all participants, while the testing set performed accurate classification of severity for 76.39% of participants with F1 values of 80.00, 63.40, and 84.80 for predicting mild, moderate, and severe CTS, respectively. Comparably, the F1 values for mild, moderate, and severe CTS predicted based on the MN cross-sectional area were 76.46, 57.78, and 64.00, respectively.. CONCLUSION: This radiomics model based on ultrasound images has certain value in distinguishing the severity of CTS, and was slightly superior to using only MN cross-sectional area for judgment. Although its diagnostic efficacy was still inferior to that of neuroelectrophysiology. However, this method was non-invasive and did not require additional costs, and could provide additional information for clinical physicians to develop diagnosis and treatment plans.


Subject(s)
Carpal Tunnel Syndrome , Severity of Illness Index , Ultrasonography , Humans , Carpal Tunnel Syndrome/diagnostic imaging , Female , Male , Ultrasonography/methods , Retrospective Studies , Middle Aged , Predictive Value of Tests , Adult , Aged , Image Interpretation, Computer-Assisted/methods , Radiomics
17.
J Neurointerv Surg ; 16(2): 177-182, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37080769

ABSTRACT

BACKGROUND: This study aimed to evaluate the efficacy, stability, and safety of computer-assisted microcatheter shaping (CAMS) in patients with intracranial aneurysms. METHODS: A total of 201 patients with intracranial aneurysms receiving endovascular coiling therapy were continuously recruited and randomly assigned to the CAMS and manual microcatheter shaping (MMS) groups. The investigated outcomes included the first-trial success rate, time to position the microcatheter in aneurysms, rate of successful microcatheter placement within 5 min, delivery times, microcatheter stability, and delivery performance. RESULTS: The rates of first-trial success (96.0% vs 66.0%, P<0.001), successful microcatheter placement within 5 min (96.04% vs 72.00%, P<0.001), microcatheter stability (97.03% vs 84.00%, P=0.002), and 'excellent' delivery performance (45.54% vs 24.00%, P<0.001) in the CAMS group were significantly higher than those in the MMS group. Additionally, the total microcatheter delivery and positioning time (1.05 minutes (0.26) vs 1.53 minutes (1.00)) was significantly shorter in the CAMS group than in the MMS group (P<0.001). Computer assistance (OR 14.464; 95% CI 4.733 to 44.207; P<0.001) and inflow angle (OR 1.014; 95% CI 1.002 to 1.025; P=0.021) were independent predictors of the first-trial success rate. CAMS could decrease the time of microcatheter position compared with MMS, whether for junior or senior surgeons (P<0.001). Moreover, computer assistance technology may be more helpful in treating aneurysms with acute angles (p<0.001). CONCLUSIONS: The use of computer-assisted procedures can enhance the efficacy, stability, and safety of surgical plans for coiling intracranial aneurysms.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Humans , Intracranial Aneurysm/therapy , Intracranial Aneurysm/surgery , Embolization, Therapeutic/methods , Treatment Outcome
18.
Phys Med Biol ; 69(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38041871

ABSTRACT

Objective. Contrast-free microvascular imaging is clinically valuable for the assessment of physiological status and the early diagnosis of diseases. Effective clutter filtering is essential for microvascular visualization without contrast enhancement. Singular value decomposition (SVD)-based spatiotemporal filter has been widely used to suppress clutter. However, clinical real-time imaging relies on short ensembles (dozens of frames), which limits the implementation of SVD filtering due to the large error of eigen-correlated estimations and high dependence on optimal threshold when used in such ensembles.Approach. To address the above challenges of imaging in short ensembles, two optimized filters of angular domain data are proposed in this paper: grouped angle SVD (GA-SVD) and angular-coherence-based higher-order SVD (AC-HOSVD). GA-SVD applies SVD to the concatenation of all angular data to improve clutter rejection performance in short ensembles, while AC-HOSVD applies HOSVD to the angular data tensor and utilizes angular coherence in addition to spatial and temporal features for filtering. Feasible threshold selection strategies in each feature space are provided. The clutter rejection performance of the proposed filters and SVD was evaluated with Doppler phantom andin vivostudies at different cases. Moreover, the robustness of the filters was explored under wrong singular value threshold estimation, and their computational complexity was studied.Main results. Qualitative and quantitative results indicated that GA-SVD and AC-HOSVD can effectively improve clutter rejection performance in short ensembles, especially AC-HOSVD. Notably, the proposed methods using 20 frames had similar image quality to SVD using 100 frames.In vivostudies showed that compared to SVD, GA-SVD increased the signal-to-noise-ratio (SNR) by 6.03 dB on average, and AC-HOSVD increased the SNR by 8.93 dB on average. Furthermore, AC-HOSVD remained better power Doppler image quality under non-optimal thresholds, followed by GA-SVD.Significance. The proposed filters can greatly enhance contrast-free microvascular visualization in short ensembles and have potential for different clinical translations due to the performance differences.


Subject(s)
Image Processing, Computer-Assisted , Signal Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Ultrasonography, Doppler/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography/methods , Blood Flow Velocity/physiology
19.
Opt Lett ; 48(23): 6287-6290, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039248

ABSTRACT

This Letter proposes a scheme for optimizing the signal-to-noise ratio (SNR) of signal to improve the system performance by a 1 bit delta-sigma modulation (DSM) in a four-mode MDM system for mobile fronthaul. A 1 bit digitalized signal with an SNR of 60 dB from transmitter digital signal processing (Tx DSP) can be achieved. Based on this system, an experimental demonstration of the ultrahigh-order 1048576-QAM signal transmission over a 50 km strong-coupling few-mode fiber (FMF) is successfully realized. With DSP, the bit error rate (BER) of the received 1048576-QAM signals over four modes transmission is below the 20% soft-decision forward error correction (20% SD-FEC) threshold of 2.4 × 10-2. To the best of our knowledge, this is the first time that the combination of DSM technology and strong-coupling MDM system is achieved and that the highest-modulation order with DSM reported in MDM system is reached. This experimental demonstration of the proposed novel scheme in MDM system can provide an effective solution for ultra-large-capacity mobile fronthaul in the future.

20.
Opt Lett ; 48(24): 6557-6560, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099798

ABSTRACT

In this Letter, we propose a novel, to the best of our knowledge, adaptive feedback-driven probabilistic constellation-shaping (FBD-PCS) method based on the robustness evaluation criteria and employ variational autoencoder (VAE)-based equalizers to implement polarization demultiplexing and nonlinear equalization for the recovery of high-order PCS-QAM signals. We experimentally demonstrate the fiber-THz 2 times 2 MIMO system with a net rate of 366.4 Gbit/s using dual-polarization 40 Gbaud PCS-64QAM signal over a 20 km SSMF and 6 m wireless link. Specifically, the feedback mechanism drives the fiber-THz system to solve optimization problems, adaptively matching the optimized distribution of transmitted symbols that maximizes normalized generalized mutual information (NGMI). We also examine six scenarios to explore nonlinear resistances of FBD-PCS symbols and the robustness of VAE-based equalizers. The results demonstrate the superiority of FBD-PCS over the Maxwell-Boltzmann (M-B) distributions in practical nonlinear-dominant systems. Additionally, the FBD-PCS signals can break limitations for ultrahigh rate transmission with the help of advanced equalizers.

SELECTION OF CITATIONS
SEARCH DETAIL
...