Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 23(4): 334, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962640

ABSTRACT

Glioma is the most common malignancy in the central nervous system. This study aims to disclose the impacts of Xihuang pill (XHP), a traditional Chinese formula, on glioma cell pyroptosis and relevant molecular mechanism. U251 and SHG-44 cells were treated with XHP alone or together with oe-POU4F1 and sh-STAT3. CCK8 assay detected the viability, flow cytometry evaluated pyroptosis, and microscopy observed cell morphology. LDH release was determined by the LDH kit and the levels of IL-1ß and IL-18 were detected by ELISA. Immunofluorescence showed NLRP3 expression in glioma cells and western blotting measured the levels of POU4F1, STAT3, NLRP3, ASC, cleaved caspase-1, and IL-1ß. The binding of POU4F1 to STAT3 was verified. Primary glioma model was established to observe tumor change by in vivo imaging, determine the levels of Ki67 and NLRP3 by immunochemistry, and detect relevant protein levels by western blotting. XHP treatment alone downregulated POU4F1 and STAT3 levels, aroused pyroptotic appearance in glioma cells such as ballooning swelling, reduced cell viability and number of pyroptotic cells, increased LDH release and IL-1ß and IL-18 levels, formed NLRP3 sports in cells, and elevated the levels of pyroptosis-related proteins. However, POU4F1 overexpression or STAT3 silencing suppressed XHP-promoted pyroptosis. Mechanistically, POU4F1 acted as a transcription factor of STAT3 and regulated its transcription. In primary glioma models, XHP enhanced glioma cell pyroptosis and blocked glioma growth. XHP facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis.


Subject(s)
Glioma , Interleukin-18 , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Glioma/drug therapy , Glioma/genetics , Transcription Factor Brn-3A , STAT3 Transcription Factor/genetics
2.
Exp Ther Med ; 22(4): 1189, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34475979

ABSTRACT

The endoplasmic reticulum stress (ERS) response serves an important role in cerebral ischemia-reperfusion injury (CIRI). However, to the best of the our knowledge, the effect of rosuvastatin on the ERS response in CIRI has not yet been studied. In the present study, the effect of rosuvastatin on cell damage in CIRI was investigated; furthermore, the effect of rosuvastatin on the ERS response was explored. Firstly, a hypoxia/reoxygenation (H/R)-induced cell damage model was established in PC12 cells. Cell viability was subsequently detected by a Cell Counting Kit-8 assay. A lactate dehydrogenase kit was used to detect cytotoxicity. TUNEL assay was then used to measure the extent of cell apoptosis, and western blotting was used to analyze the expression levels of the apoptosis-associated proteins Bax, Bcl-2, cleaved caspase-3 and cleaved caspase-9. In addition, western blotting was used to detect the expression levels of ERS-associated proteins, including phosphorylated (p)-protein kinase R-like endoplasmic reticulum kinase (PERK), p-eukaryotic initiation factor 2α and other proteins. Treatment with rosuvastatin led to an increased activity of H/R-induced PC12 cells and a decrease in their cytotoxicity. Rosuvastatin also led to an inhibition in apoptosis and ERS in H/R-induced PC12 cells. After administration of the ERS response activator thapsigargin (TG), TG was found to reverse the protective effect of rosuvastatin on injury of H/R-induced PC12 cells. Taken together, these findings have shown that rosuvastatin is able to protect PC12 cells from H/R-induced injury via inhibiting ERS-induced apoptosis, providing a strong theoretical basis for the use of rosuvastatin in the clinical treatment of CIRI.

3.
Int J Biochem Cell Biol ; 104: 149-160, 2018 11.
Article in English | MEDLINE | ID: mdl-30267803

ABSTRACT

Nurr1, a nuclear transcription factor, has been linked to ischemia-reperfusion injury (IRI) in heart and kidney via modulating mitochondrial homeostasis. However, its role in cerebral ischemia-reperfusion has not been defined. In the present study, we found that cerebral IRI significantly increased the expression of Nurr1 and genetic ablation of Nurr1 attenuated the infarction area and reduced the neuron apoptosis under brain IRI burden. Functional studies have demonstrated that Nurr1 induced neuron death via activating mitochondrial fission. Aberrant mitochondrial fission promoted mitochondrial membrane potential reduction, evoked cellular oxidative stress and activated caspase-9-dependent mitochondrial apoptotic pathway. Interestingly, Nurr1 deletion alleviated fission-mediated mitochondrial damage, sustaining mitochondrial homeostasis and favoring neuron survival. Further, we found that Nurr1 deletion modulated mitochondrial fission via preventing INF2 upregulation in a manner dependent on YAP pathways. Either pharmacological blockade of YAP pathway or overexpression of INF2 abrogated the inhibitory effect of Nurr1 deletion on mitochondrial fission, leading to neuron death via mitochondrial apoptosis. Altogether, our results report that the pathogenesis of cerebral ischemia-reperfusion injury is associated with Nurr1 upregulation followed by augmented mitochondrial fission via an abnormal YAP-INF2 pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Brain Ischemia/complications , Microfilament Proteins/metabolism , Mitochondrial Dynamics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Phosphoproteins/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Animals , Cell Cycle Proteins , Cell Death , Formins , Mice , Mice, Inbred C57BL , Neurons/pathology , Reperfusion Injury/complications , Signal Transduction , YAP-Signaling Proteins
4.
Neurochem Res ; 43(10): 1963-1977, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30136162

ABSTRACT

Mitochondrial dysfunction has been acknowledged as the key pathogenic mechanism in cerebral ischemia-reperfusion (IR) injury. Mitophagy is the protective system used to sustain mitochondrial homeostasis. However, the upstream regulator of mitophagy in response to brain IR injury is not completely understood. Nuclear receptor subfamily 4 group A member 1 (NR4A1) has been found to be associated with mitochondrial protection in a number of diseases. The aim of our study is to explore the functional role of NR4A1 in cerebral IR injury, with a particular focus on its influence on mitophagy. Wild-type mice and NR4A1-knockout mice were used to generate cerebral IR injury in vivo. Mitochondrial function and mitophagy were detected via immunofluorescence assays and western blotting. Cellular apoptosis was determined via MTT assays, caspase-3 activity and western blotting. Our data revealed that NR4A1 was significantly increased in the reperfused brain tissues. Genetic ablation of NR4A1 reduced the cerebral infarction area and repressed neuronal apoptosis. The functional study demonstrated that NR4A1 modulated cerebral IR injury by inducing mitochondrial damage. Higher NR4A1 promoted mitochondrial potential reduction, evoked cellular oxidative stress, interrupted ATP generation, and initiated caspase-9-dependent apoptosis. Mechanistically, NR4A1 induced mitochondrial damage by disrupting Mfn2-mediated mitophagy. Knockdown of NR4A1 elevated Mfn2 expression and therefore reversed mitophagic activity, sending a prosurvival signal for mitochondria in the setting of cerebral IR injury. Further, we demonstrated that NR4A1 modulated Mfn2 expression via the MAPK-ERK-CREB signaling pathway. Blockade of the ERK pathway could abrogate the permissive effect of NR4A1 deletion on mitophagic activation, contributing to neuronal mitochondrial apoptosis. Overall, our results demonstrate that the pathogenesis of cerebral IR injury is closely associated with a drop in protective mitophagy due to increased NR4A1 through the MAPK-ERK-CREB signaling pathway.


Subject(s)
Brain Ischemia/metabolism , GTP Phosphohydrolases/metabolism , Mitophagy/physiology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Reperfusion Injury/metabolism , Animals , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...