Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Front Optoelectron ; 16(1): 15, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318647

ABSTRACT

Infrared photovoltaic cells (IRPCs) have attracted considerable attention for potential applications in wireless optical power transfer (WOPT) systems. As an efficient fiber-integrated WOPT system typically uses a 1550 nm laser beam, it is essential to tune the peak conversion efficiency of IRPCs to this wavelength. However, IRPCs based on lead sulfide (PbS) colloidal quantum dots (CQDs) with an excitonic peak of 1550 nm exhibit low short circuit current (Jsc) due to insufficient absorption under monochromatic light illumination. Here, we propose comprehensive optical engineering to optimize the device structure of IRPCs based on PbS CQDs, for 1550 nm WOPT systems. The absorption by the device is enhanced by improving the transmittance of tin-doped indium oxide (ITO) in the infrared region and by utilizing the optical resonance effect in the device. Therefore, the optimized device exhibited a high short circuit current density of 37.65 mA/cm2 under 1 sun (AM 1.5G) solar illumination and 11.91 mA/cm2 under 1550 nm illumination 17.3 mW/cm2. Furthermore, the champion device achieved a record high power conversion efficiency (PCE) of 7.17% under 1 sun illumination and 10.29% under 1550 nm illumination. The PbS CQDs IRPCs under 1550 nm illumination can even light up a liquid crystal display (LCD), demonstrating application prospects in the future.

2.
ACS Nano ; 16(6): 9691-9700, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35587990

ABSTRACT

Animals execute intelligent and efficient interactions with their surroundings through neural pathways, exhibiting learning, memory, and cognition. Artificial autonomous devices that generate self-optimizing feedback mimicking biological systems are essential in pursuing future intelligent robots. Here, we report an artificial neural pathway (ANP) based on a memristor synapse to emulate neuromorphic learning behaviors. In our ANP, optical stimulations are detected and converted into electrical signals through a flexible perovskite photoreceptor. The acquired electrical signals are further processed in a zeolitic imidazolate frameworks-8 (ZIF-8)-based memristor device. By controlling the growth of the ZIF-8 nanoparticles, the conductance of the memristor can be finely modulated with electrical stimulations to mimic the modulation of synaptic plasticity. The device is employed in the ANP to implement synaptic functions of learning and memory. Subsequently, the synaptic feedbacks are used to direct a robotic arm to perform responding motions. Upon repeatedly "reviewing" the optical stimulation, the ANP is able to learn, memorize, and complete the specific motions. This work provides a promising strategy toward the design of intelligent autonomous devices and bioinspired robots through memristor-based systems.


Subject(s)
Synapses , Animals , Neural Pathways , Neuronal Plasticity , Synapses/physiology
3.
Adv Mater ; 34(1): e2102560, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34632642

ABSTRACT

Phase transitions are universal in solid-state matters, as well as in periodic electromagnetic metasurfaces-the photonic analogues of crystals. Although such transitions dictate the properties of active metasurfaces, universal ways to describe the structure transition of periodic metasurfaces have not yet been established. Here, the authors report the strain-enabled phase transition (or lattice deformation) of stretchable metasurfaces with the crystallographic description. They analytically and experimentally demonstrate the phase transition of plasmonic lattices between two arbitrary 2D Bravais lattices under certain strain configurations. The strain-induced symmetry lowering of the structures gives rise to optical anisotropy upon polarization, namely, linearly and circularly polarized dichroism. They further demonstrate the potential of phase transition in information decoding with applied strain. Interpreting the phase transition of metasurfaces from a standpoint of symmetry would accelerate the discovery of emergent properties, and provide a generalizable approach to designing active metasurfaces.

4.
Opt Express ; 28(26): 38592-38602, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379426

ABSTRACT

Monolayer two-dimensional materials (2DMs) have excellent optical and electrical properties and show great application potential in photodetectors. However, the thickness at the atomic scale leads to weak light absorption, which greatly limits the responsivity of corresponding photodetectors. Here we propose an all-dielectric sub-wavelength zero-contrast grating structure that enables a monolayer of MoS2 with ultra-narrow bandwidth perfect light absorption. The absorption enhancement can be attributed to the critical coupling of guided mode resonances from two specific order diffractions in the structure, as confirmed by the planar waveguide theory and coupled mode theory. Such absorption enhancement can be generalized to any other absorptive atomically thin films, and the wavelength of perfect absorption can be tuned by scaling the dimension of the photonic structure. Our results offer a promising photonic approach to realize ultra-highly sensitive narrow-band photodetectors by using atomically thin materials.

5.
Adv Mater ; 32(4): e1905399, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31803996

ABSTRACT

The emulation of human sensation, perception, and action processes has become a major challenge for bioinspired intelligent robotics, interactive human-machine interfacing, and advanced prosthetics. Reflex actions, enabled through reflex arcs, are important for human and higher animals to respond to stimuli from environment without the brain processing and survive the risks of nature. An artificial reflex arc system that emulates the functions of the reflex arc simplifies the complex circuit design needed for "central-control-only" processes and becomes a basic electronic component in an intelligent soft robotics system. An artificial somatic reflex arc that enables the actuation of electrochemical actuators in response to the stimulation of tactile pressures is reported. Only if the detected pressure by the pressure sensor is above the stimulus threshold, the metal-organic-framework-based threshold controlling unit (TCU) can be activated and triggers the electrochemical actuators to complete the motion. Such responding mechanism mimics the all-or-none law in the human nervous system. As a proof of concept, the artificial somatic reflex arc is successfully integrated into a robot to mimic the infant grasp reflex. This work provides a unique and simplifying strategy for developing intelligent soft robotics, next-generation human-machine interfaces, and neuroprosthetics.

6.
Adv Mater ; 31(35): e1901360, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31282042

ABSTRACT

Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin-like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long-term use. Thermal-radiation-assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer-scale format through a one-step process. As a proof of concept, both long-term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.

7.
Adv Mater ; 31(1): e1803883, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30334282

ABSTRACT

Tactile sensors capable of perceiving biophysical signals such as force, pressure, or strain have attracted extensive interest for versatile applications in electronic skin, noninvasive healthcare, and biomimetic prostheses. Despite these great achievements, they are still incapable of detecting bio/chemical signals that provide even more meaningful and precise health information due to the lack of efficient transduction principles. Herein, a tactile chemomechanical transduction strategy that enables the tactile sensor to perceive bio/chemical signals is proposed. In this methodology, pyramidal tactile sensors are linked with biomarker-induced gas-producing reactions, which transduce biomarker signals to electrical signals in real time. The method is advantageous as it enhances electrical signals by more than tenfold based on a triple-step signal amplification strategy, as compared to traditional electrical biosensors. It also constitutes a portable and general platform capable of quantifying a wide spectrum of targets including carcinoembryonic antigen, interferon-γ, and adenosine. Such tactile chemomechanical transduction would greatly broaden the application of tactile sensors toward bio/chemical signals perception which can be used in ultrasensitive portable biosensors and chemical-responsive chemomechanical systems.


Subject(s)
Biosensing Techniques/methods , Transducers , Adenosine/analysis , Biomarkers/metabolism , Biosensing Techniques/instrumentation , Carcinoembryonic Antigen/analysis , Electricity , Gases/chemistry , Gases/metabolism , Interferon-gamma/analysis , Metal Nanoparticles/chemistry , Pressure , Touch
8.
Adv Mater ; 31(6): e1806897, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30549115

ABSTRACT

The development of the photostable higher-order multiphoton-excited (MPE) upconversion single microcrystalline material is fundamentally and technologically important, but very challenging. Here, up to five-photon excited luminescence in a host-guest metal-organic framework (MOF) and perovskite quantum dot (QD) hybrid single crystal ZJU-28⊃MAPbBr3 is shown via an in situ growth approach. Such a MOF strategy not only results in a high QD loading concentration, but also significantly diminishes the aggregation-caused quenching (ACQ) effect, provides effective surface passivation, and greatly reduces the contact of the QDs with the external bad atmosphere due to the confinement effect and protection of the framework. These advantages make the resulting ZJU-28⊃MAPbBr3 single crystals possess high PLQY of ≈51.1%, a high multiphoton action cross-sections that can rival the current highest record (measured in toluene solution), and excellent photostability. These findings liberate the excellent luminescence and nonlinear optical properties of perovskite QDs from the solution system to the solid single-crystal system, which provide a new avenue for the exploitation of high-performance multiphoton excited hybrid single microcrystal for future optoelectronic and micro-nano photonic integration applications.

9.
Adv Mater ; 31(7): e1806385, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30556251

ABSTRACT

As emerging efficient emitters, metal-halide perovskites offer the intriguing potential to the low-cost light emitting devices. However, semiconductors generally suffer from severe luminescence quenching due to insufficient confinement of excitons (bound electron-hole pairs). Here, Sn-triggered extrinsic self-trapping of excitons in bulk 2D perovskite crystal, PEA2 PbI4 (PEA = phenylethylammonium), is reported, where exciton self-trapping never occurs in its pure state. By creating local potential wells, isoelectronic Sn dopants initiate the localization of excitons, which would further induce the large lattice deformation around the impurities to accommodate the self-trapped excitons. With such self-trapped states, the Sn-doped perovskites generate broadband red-to-near-infrared (NIR) emission at room temperature due to strong exciton-phonon coupling, with a remarkable quantum yield increase from 0.7% to 6.0% (8.6 folds), reaching 42.3% under a 100 mW cm-2 excitation by extrapolation. The quantum yield enhancement stems from substantial higher thermal quench activation energy of self-trapped excitons than that of free excitons (120 vs 35 meV). It is further revealed that the fast exciton diffusion involves in the initial energy transfer step by transient absorption spectroscopy. This dopant-induced extrinsic exciton self-trapping approach paves the way for extending the spectral range of perovskite emitters, and may find emerging application in efficient supercontinuum sources.

10.
Adv Mater ; : e1802516, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29971867

ABSTRACT

The increasing need for smart systems in healthcare, wearable, and soft robotics is creating demand for low-power sensory circuits that can detect pressure, temperature, strain, and other local variables. Among the most critical requirements, the matrix circuitry to address the individual sensor device must be sensitive, immune to disturbances, and flexible within a high-density sensory array. Here, a strategy is reported to enhance the matrix addressing of a fully integrated flexible sensory array with an improvement of 108 fold in the maximum readout value of impedance by a bidirectional threshold switch. The threshold switch shows high flexibility (bendable to a radius of about 1 mm) and a high nonlinearity of ≈1010 by using a nanocontact structure strategy, which is revealed and validated by molecular dynamics simulations and experiments at variable mechanical stress. Such a flexible electronic switch enables a new generation of large-scale flexible and stretchable electronic and optoelectronic systems.

11.
Angew Chem Int Ed Engl ; 57(31): 9780-9784, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-29869422

ABSTRACT

Photoredox catalysis provides opportunities in harnessing clean and green resources such as sunlight and O2 , while the acid and base surface sites of metal oxides are critical for industrial catalysis such as oil cracking. The contribution of metal oxide surfaces towards photocatalytic aerobic reactions was elucidated, as demonstrated through the hydroxylation of boronic acids to alcohols. The strength and proximity of the surface base sites appeared to be two key factors in driving the reaction; basic and amphoteric oxides such as MgO, TiO2 , ZnO, and Al2 O3 enabled high alcohol yields, while acidic oxides such as SiO2 and B2 O3 gave only low yields. The reaction is tunable to different irradiation sources by merely selecting photosensitizers of compatible excitation wavelengths. Such surface complexation mechanisms between reactants and earth abundant materials can be effectively utilized to achieve a wider range of photoredox reactions.

12.
Adv Mater ; 30(26): e1707285, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29774617

ABSTRACT

Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics.

13.
Adv Mater ; 30(16): e1706395, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29544021

ABSTRACT

Memristive synapses based on resistive switching are promising electronic devices that emulate the synaptic plasticity in neural systems. Short-term plasticity (STP), reflecting a temporal strengthening of the synaptic connection, allows artificial synapses to perform critical computational functions, such as fast response and information filtering. To mediate this fundamental property in memristive electronic devices, the regulation of the dynamic resistive change is necessary for an artificial synapse. Here, it is demonstrated that the orientation of mesopores in the dielectric silica layer can be used to modulate the STP of an artificial memristive synapse. The dielectric silica layer with vertical mesopores can facilitate the formation of a conductive pathway, which underlies a lower set voltage (≈1.0 V) compared to these with parallel mesopores (≈1.2 V) and dense amorphous silica (≈2.0 V). Also, the artificial memristive synapses with vertical mesopores exhibit the fastest current increase by successive voltage pulses. Finally, oriented silica mesopores are designed for varying the relaxation time of memory, and thus the successful mediation of STP is achieved. The implementation of mesoporous orientation provides a new perspective for engineering artificial synapses with multilevel learning and forgetting capability, which is essential for neuromorphic computing.

14.
Adv Mater ; 30(12): e1706589, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29380896

ABSTRACT

Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.

15.
Adv Mater ; 29(40)2017 Oct.
Article in English | MEDLINE | ID: mdl-28869690

ABSTRACT

Polymeric microelectrode arrays (MEAs) are emerging as a new generation of biointegrated microelectrodes to transduce original electrochemical signals in living tissues to external electrical circuits, and vice versa. So far, the challenge of stretchable polymeric MEAs lies in the competition between high stretchability and good electrode-substrate adhesion. The larger the stretchability, the easier the delamination of electrodes from the substrate due to the mismatch in their Young's modulus. In this work, polypyrrole (PPy) electrode materials are designed, with PPy nanowires integrated on the high conductive PPy electrode arrays. By utilizing this electrode material, for the first time, stretchable polymeric MEAs are fabricated with both high stretchability (≈100%) and good electrode-substrate adhesion (1.9 MPa). In addition, low Young's modulus (450 kPa), excellent recycling stability (10 000 cycles of stretch), and high conductivity of the MEAs are also achieved. As a proof of concept, the as-prepared polymeric MEAs are successfully used for conformally recording the electrocorticograph signals from rats in normal and epileptic states, respectively. Further, these polymeric MEAs are also successful in stimulating the ischiadic nerve of the rat. This strategy provides a new perspective to the highly stretchable and mechanically stable polymeric MEAs, which are vital for compliant neural electrodes.


Subject(s)
Microelectrodes , Animals , Elastic Modulus , Nanowires , Rats
16.
Adv Mater ; 29(34)2017 Sep.
Article in English | MEDLINE | ID: mdl-28681955

ABSTRACT

Animals possess various functional systems such as sensory, nervous, and motor systems, which show effective cooperation in order to realize complicated and intelligent behaviors. This inspires rational designs for the integration of individual electronic devices to exhibit a series of functions, such as sensing, memory, and feedback. Inspired by the fact that humans can monitor and memorize various body motions, a motion memory device is developed to mimic this biological process. In this work, mechanical hybrid substrates are introduced, in which rigid memory devices and stretchable strain sensors are integrated into a single module, which enables them to work cooperatively in the wearable state. When attached to the joints of limbs, the motion memory device can detect the deformations caused by limb motions and simultaneously store the corresponding information in the memory device. This work would be valuable in materials design and electronics technology toward the realization of wearable and multifunctional electronic modules.

17.
Adv Mater ; 29(33)2017 Sep.
Article in English | MEDLINE | ID: mdl-28660620

ABSTRACT

Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics.

18.
J Mater Chem B ; 5(27): 5458-5463, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-32264085

ABSTRACT

How can imaging be improved? Coordination polymers (CPs) show fascinating potential in optoelectronic optics but limited potential in bioimaging. Without doubt, it was very meaningful when CPs were first used in second-harmonic generation (SHG) imaging. Herein, through reasonable design and synthesis, a series of nonlinear optical CPs bearing very good one-photon excited fluorescence (OPEF), two-photon excited fluorescence (TPEF) and very strong SHG properties has been presented. Further study demonstrated that the nanoscale CPs show very strong SHG signals which have been applied in the three-dimensional imaging of thick block tissue with higher spatial resolution through simultaneous multichannel nonlinear optical (NLO) imaging technology. After simple encapsulation by polymeric micelles, the nanoscale CPs were successfully applied in SHG bio-imaging within the living cells. This finding throws light on the design of nanoscale NLO CPs and offers a simple avenue to develop novel effective exogenous SHG imaging agents.

19.
Adv Mater ; 29(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-27809367

ABSTRACT

High-adhesion stretchable electrodes are fabricated by utilizing a novel nanopile interlocking strategy. Nanopiles significantly enhance adhesion and redistribute the strain in the film, achieving high stretchability. The nanopile electrodes enable simultaneous monitoring of electromyography signals and mechanical deformations. This study opens up a new perspective of achieving stretchability and high adhesion for stretchable electronics.

20.
Adv Mater ; 28(41): 9175-9181, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27572902

ABSTRACT

A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...