Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(3): 3912-3921, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297601

ABSTRACT

In this work, the concentration of rare-earth ions in doped silica whispering gallery lasers (WGLs) is controlled by evaporation. The fabrication of WGLs is used to experimentally evaluate the evaporation rate (mol/µm) and ratio (mol/mol) of erbium and silica lost from a doped fiber during heating. Fixed lengths of doped silica fiber are spliced to different lengths of undoped fiber and then evaporated by feeding into the focus of a CO2 laser. During evaporation, erbium ions are precipitated in the doped silica fiber to control the erbium concentration in the remaining SiO2, which is melted into a microsphere. By increasing the length of the undoped section, a critical point is reached where effectively no ions remain in the glass microsphere. The critical point is found using the spectra of the whispering gallery modes in microspheres with equal sizes. From the critical point, it is estimated that, for a given CO2 laser power, 6.36 × 10-21 mol of Er3+ is lost during the evaporation process for every cubic micron of silica fiber. This is equivalent to 1.74 × 10-7 mol of Er3+ lost per mol of SiO2 evaporated. This result facilitates the control of the doping concentration in WGLs and provides insight into the kinetics of laser-induced evaporation of doped silica.

2.
Opt Express ; 29(11): 16879-16886, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154240

ABSTRACT

In this work, we present a packaged whispering gallery mode (WGM) device based on an optical nanoantenna as the coupler and a glass microsphere as the resonator. The microspheres were fabricated from either SiO2 fiber or Er3+-doped fiber, the latter creating a WGM laser with a threshold of 93 µW at 1531 nm. The coupler-resonator WGM device was packaged in a glass capillary. The performance of the packaged microlaser was characterized, with lasing emission both excited in and collected from the WGM cavity via the nanoantenna. The packaged system provides isolation from environmental contamination, a small size, and unidirectional coupling while maintaining a high quality (Q-) factor (∼108).

3.
Opt Lett ; 45(3): 787-790, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32004312

ABSTRACT

We propose and demonstrate a miniature Fabry-Perot interferometer (FPI) based on a movable microsphere reflector. The movable microsphere acts as a good reflector, with the reflections occurring at the spliced single-mode fiber/hollow-core fiber interface and the surface of a microsphere, resulting in two-beam interference. The silica microsphere is formed at the tip of a half-tapered optical fiber, and its diameter can be reduced to miniaturize the FPI. The movable microsphere interferometer exhibits a highly linear response to external displacement change, and a high displacement sensitivity of 11.9 pm/nm with a nanoscale resolution of 1.7 nm is achieved. Wide-range displacement can also be measured by monitoring the changes in the free spectral range of the reflection spectrum. Therefore, this miniaturized FPI may find use in applications in nano-displacement measurement fields, and the concept of a movable microsphere reflector is of great significance for the miniaturization of micro-photonic devices.

4.
Opt Lett ; 44(13): 3214-3217, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31259924

ABSTRACT

A novel, to the best of our knowledge, in-fiber temperature sensor based on green up-conversion (UC) luminescence in an Er3+-Yb3+ co-doped tellurite glass microsphere is described. The tellurite glass microsphere is located firmly inside a suspended tri-core hollow-fiber (STCHF) structure. The pump light launched via a single-mode fiber (SMF) is passed through a section of multimode fiber, which is fusion spliced between the SMF and the STCHF into the cores suspended inside the hollow fiber and coupled into the microsphere. Green and red UC emissions of the Er3+ ions are observed using 980 nm pump excitation. The temperature-sensing capability of the tellurite glass microsphere is based on the thermally coupled effect between the upper energy levels responsible for green emissions at 528 nm and 549 nm. The resulting fluorescence intensity ratio, depending on the surrounding temperature range from 303 K to 383 K, is experimentally determined, and a maximum sensitivity of 5.47×10-3 K-1 is demonstrated. This novel in-fiber microsphere-resonator-based device is highly integrated and has the additional advantages of ease of fabrication, compact structure, and low fabrication cost and therefore has great application potential in integrated optical sources including lasers.

5.
Opt Lett ; 44(7): 1864-1867, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933167

ABSTRACT

A novel design of nested optical fiber based multiple knot resonators is presented. The design consists of three knot resonators, two of which share a significant fraction of their optical path. The relationship between the knots' diameter ratio and the transmission spectrum is investigated. The output spectrum is theoretically analyzed using transfer matrix analysis and the calculated results exhibit good agreement with experimental results. The free spectral range (FSR) is varied by simply fine-tuning the diameter of the small knot. The periodic spectrum of this optical microfiber based photonic device has a number of applications in the sensing and communications field, e.g., optical interleavers, frequency combs, filters, and fiber lasers. This Letter demonstrates that the variation of the output spectrum can be implemented simply by changing the knot sizes and coupling coefficients.

6.
Micromachines (Basel) ; 9(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30424289

ABSTRACT

In recent years, compound glass microsphere resonator devices have attracted increasing interest and have been widely used in sensing, microsphere lasers, and nonlinear optics. Compared with traditional silica resonators, compound glass microsphere resonators have many significant and attractive properties, such as high-Q factor, an ability to achieve high rare earth ion, wide infrared transmittance, and low phonon energy. This review provides a summary and a critical assessment of the fabrication and the optical characterization of compound glasses and the related fabrication and applications of compound glass microsphere resonators.

7.
Sensors (Basel) ; 18(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071679

ABSTRACT

In recent years, many temperature sensing devices based on microsphere resonators have emerged, attracting an increasing research interest. For the purpose of this review article, microsphere resonators are divided according to their constituting materials, namely silicone, silica, compound glass, and liquid droplet. Temperature monitoring relies mainly on the thermo-optic/thermal expansion of the microspheres and on the fluorescence of the doped ions. This article presents a comprehensive review of the current state of the art of microsphere based temperature sensing and gives an indication of future directions.

8.
Opt Lett ; 43(16): 3961-3964, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106926

ABSTRACT

A novel in-fiber whispering-gallery mode (WGM) microsphere resonator-based integrated device is reported. It is fabricated by placing a silica microsphere into an embedded dual-core hollow fiber (EDCHF). Using a fiber tapering method, a silica microsphere can be placed and fixed in the transition section of the hollow core of the EDCHF. The transmitted light from the tapered-input single-mode fiber is coupled into the embedded silica microsphere via the two suspended fiber cores, and hence effectively excites the WGMs. A Q-factor of 5.54×103 is achieved over the wavelength range of 1100-1300 nm. The polarization and temperature dependence of the in-fiber WGM microsphere resonator device is also investigated experimentally. This integrated photonics device provides greatly improved mechanical stability, compared with the traditional tapered fiber-coupled WGM microresonator devices. Additional advantages include ease of fabrication, compact structure, and low cost. This novel in-fiber WGM resonator integrated device is ideally positioned to access a wide range of potential applications in optical sensing and microcavity lasing.

SELECTION OF CITATIONS
SEARCH DETAIL
...