Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Integr Zool ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38379130

ABSTRACT

Urbanization-driven biotic homogenization has been recorded in various ecosystems on local and global scales; however, it is largely unexplored in developing countries. Empirical studies on different taxa and bioregions show conflicting results (i.e. biotic homogenization vs. biotic differentiation); the extent to which the community composition changes in response to anthropogenic disturbances and the factors governing this process, therefore, require elucidation. Here, we used a compiled database of 760 bird species in China to quantify the multiple-site ß-diversity and fitted distance decay in pairwise ß-diversities between natural and urban assemblages to assess whether urbanization had driven biotic homogenization. We used generalized dissimilarity models (GDM) to elucidate the roles of spatial and environmental factors in avian community dissimilarities before and after urbanization. The multiple-site ß-diversities among urban assemblages were markedly lower than those among natural assemblages, and the distance decays in pairwise similarities in natural assemblages were more rapid. These results were consistent among taxonomic, phylogenetic, and functional aspects, supporting a general biotic homogenization driven by urbanization. The GDM results indicated that geographical distance and temperature were the dominant predictors of avian community dissimilarity. However, the contribution of geographical distance and climatic factors decreased in explaining compositional dissimilarities in urban assemblages. Geographical and environmental distances accounted for much lower variations in compositional dissimilarities in urban than in natural assemblages, implying a potential risk of uncertainty in model predictions under further climate change and anthropogenic disturbances. Our study concludes that taxonomic, phylogenetic, and functional dimensions elucidate urbanization-driven biotic homogenization in China.

2.
J Anim Ecol ; 93(2): 208-220, 2024 02.
Article in English | MEDLINE | ID: mdl-38098103

ABSTRACT

Urbanization alters natural habitats, restructures biotic communities and serves as a filter for selecting species from regional species pools. However, empirical evidence of the specific traits that allow species to persist in urban areas yields mixed results. More importantly, it remains unclear which traits are widespread for species utilizing urban spaces (urban utilizers) and which are environment-dependent traits. Using 745 bird species from 287 university/institute campuses in 74 cities and their species pools across China, we tested whether species that occur in urban areas are correlated with regards to their biological (body mass, beak shape, flight capacity and clutch size), ecological (diet diversity, niche width and habitat breadth), behavioural (foraging innovation) and evolutionary (diversification rate) attributes. We used Bayesian phylogenetic generalized linear mixed models to disentangle the relative roles of these predictors further, and to determine the extent to which the effects of these predictors varied among different cities. We found that urban birds were more phylogenetically clustered than expected by chance, and were generally characterized by a larger habitat breadth, faster diversification rate, more behavioural innovation and smaller body size. Notably, the relative effects of the attributes in explaining urban bird communities varied with city temperature and elevation, indicating that the filters used to determine urban species were environment dependent. We conclude that, while urban birds are typically small-sized, generalists, innovative and rapidly diversifying, the key traits that allow them to thrive vary spatially, depending on the climatic and topographic conditions of the city. These findings emphasize the importance of studying species communities within specific cities to better understand the contextual dependencies of key traits that are filtered by urban environments.


Subject(s)
Birds , Ecosystem , Animals , Bayes Theorem , Biodiversity , Cities , Phylogeny , Universities , Urbanization
3.
Glob Chang Biol ; 29(18): 5199-5210, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37427682

ABSTRACT

Bergmann's rule states that endotherms have a large body size in high latitudes and cold climates. However, previous empirical studies have reported mixed evidence on the relationships between body size and latitude, raising the question of why some clades of endotherms follow Bergmann's rule, whereas others do not. Here, we synthesized the interspecific relationships between body size and latitude among 16,187 endothermic species (5422 mammals and 10,765 birds) using Bayesian phylogenetic generalized linear mixed models to examine the strength and magnitude of Bergmann's rule. We further assessed the effect of biological and ecological factors (i.e., body mass categories, dietary guild, winter activity, habitat openness, and climate zone) on the variations in the body mass-latitude relationships by adding an interaction term in the models. Our results revealed a generally weak but significant adherence to Bergmann's rule among all endotherms at the global scale. Despite taxonomic variation in the strength of Bergmann's rule, the body mass of species within most animal orders showed an increasing trend toward high latitudes. Generally, large-bodied, temperate species, non-hibernating mammals, and migratory and open-habitat birds tend to conform to Bergmann's rule more than their relatives do. Our results suggest that whether Bergmann's rule applies to a particular taxon is mediated by not only geographic and biological features, but also potential alternate strategies that species might have for thermoregulation. Future studies could explore the potential of integrating comprehensive trait data into phylogenetic comparative analysis to re-assess the classic ecogeographic rules on a global scale.

4.
Curr Zool ; 69(1): 12-20, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36974143

ABSTRACT

The biotas of Taiwan and Hainan Islands are of continental origin, but the manner with which historical and ecological factors shaped these insular species is still unclear. Here, we used freshwater fish as a model to fill this gap by quantifying the phylogenetic structure of the insular faunas and disentangling the relative contribution of potential drivers. Firstly, we used clustering and ordination analyses to identify regional species pools. To test whether the insular freshwater fish faunas were phylogenetically clustered or overdispersed, we calculated the net relatedness index (NRI) and the nearest taxon index (NTI). Finally, we implemented logistic regressions to disentangle the relative importance of species attributes (i.e., maximum body length, climatic niche dissimilarity [ND], and diversification) and historical connectivity (HC) in explaining the insular faunas. Our results showed that the most possible species pools of Taiwan are Zhejiang and Fujian provinces, and those of Hainan are Guangdong and Guangxi provinces. These insular faunas showed random phylogenetic structures in terms of NRI values. According to the NTI values, however, the Taiwanese fauna displayed more phylogenetic clustering, while the Hainanese one was more overdispersed. Both the standard and phylogenetic logistic regressions identified HC and climatic ND as the 2 top explanatory variables for species assemblages on these islands. Our reconstruction of the paleo-connected drainage basins provides insight into how historical processes and ecological factors interact to shape the freshwater fish fauna of the East Asian islands.

5.
Sci Total Environ ; 769: 144629, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33477038

ABSTRACT

Present-day biodiversity in insular biota results from the interplay among geographical barriers, environmental filtering, and historical biogeography, but how these factors interact on insular biodiversity patterns is poorly understood. Here, we analysed the geographical patterns of beta diversity of seed plants between Hainan Island and the neighbouring landmasses in relation to space and the environmental factors to assess the relative effects of historical processes and ecological gradients on community assembly. We assessed beta diversity patterns by quantifying the turnover and nestedness components and used clustering and ordination to investigate the relationships between local floras from Hainan and the neighbouring landmasses. Utilising simple linear regression and linear mixed effect models, we evaluated the importance of historical processes and environmental gradients in shaping these beta diversity patterns. Our results show that the contributions of nestedness and turnover components to the total beta diversity vary across space. The flora of Hainan predominantly nests with the flora of Vietnam but shows larger species turnover with Guangdong, Guangxi, and Taiwan. Clustering and ordination analyses indicate that Hainan is first merged with Vietnam, after which it is grouped with mainland China and finally with Taiwan and the Philippines. The results of the linear mixed effect models consistently reveal that temperature, followed by the historical land connectivity, has the most important role in shaping the floristic dissimilarity. We conclude that the flora of Hainan is of continental origin and has the highest floristic affinity with Vietnam. The periodic emergence of a land bridge during Quaternary glacial cycles determines the origin of Hainan's flora, and temperature shapes the floristic dissimilarities via environmental filtering. Our study highlights the critical roles of historical sea level change and current environmental limitation in structuring the plant communities on Southeast Asian islands.


Subject(s)
Biodiversity , China , Philippines , Taiwan , Temperature , Vietnam
6.
Commun Biol ; 3(1): 415, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737418

ABSTRACT

The Tibetan Plateau (TP) and surrounding regions have one of the most complex biotas on Earth. However, the evolutionary history of these regions in deep time is poorly understood. Here, we quantify the temporal changes in beta dissimilarities among zoogeographical regions during the Cenozoic using 4,966 extant terrestrial vertebrates and 1,278 extinct mammal genera. We identify ten present-day zoogeographical regions and find that they underwent a striking change over time. Specifically, the fauna on the TP was close to the Oriental realm in deep time but became more similar to the Palearctic realms more recently. The present-day zoogeographical regions generally emerged during the Miocene/Pliocene boundary (ca. 5 Ma). These results indicate that geological events such as the Indo-Asian Collision, the TP uplift, and the aridification of the Asian interior underpinned the evolutionary history of the zoogeographical regions surrounding the TP over different time periods.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Mammals/physiology , Vertebrates/physiology , Animals , Mammals/genetics , Phylogeography , Tibet , Vertebrates/genetics
7.
Sci Total Environ ; 704: 135301, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31796290

ABSTRACT

The mapping of earth's biodiversity has advanced our theoretical and empirical understanding of biodiversity and has thus guided conservation efforts. Yet, early biodiversity maps often relied on alpha diversity indices, while beta diversity has rarely been used for practical conservation actions. We used generalized dissimilarity modelling (GDM) and variance partitioning to map beta diversity patterns of Hainan Island, China, and explore its underlying factors based on a large dataset of 248,538 individual trees belonging to 1,016 species in 902 forest plots. We used principal component analysis and hierarchical clustering to visualize community similarity, and spatial overlap analysis to assess the ability of the current protected areas (PAs) to encompass beta diversity. The GDMs explained 27.65% and 26.58% of the variation in beta diversity at the genus and species levels, respectively. The community composition of tree species in Hainan presented a general east-to-west gradient, and three floristic regions were delineated. This biogeographical pattern is predominantly structured by mean annual precipitation. Environmental variables, rather than geographical distance, were the most important factors determining present beta diversity patterns. Currently, PAs of Hainan Island are concentrated on mountain forest areas, while the lowland forest has largely been ignored. Thus, we suggest that biodiversity mapping based only on alpha diversity is not enough to identify conservation gaps, and the inclusion of beta diversity in such maps constitutes a promising tool to maximize the biodiversity coverage of PAs. Our study provides empirical evidence that a spatially explicit analysis of beta diversity in a specific region can be used for conservation planning.


Subject(s)
Biodiversity , Conservation of Natural Resources , Trees , Tropical Climate , Forests
8.
Glob Chang Biol ; 25(8): 2810-2824, 2019 08.
Article in English | MEDLINE | ID: mdl-31120573

ABSTRACT

Large-diameter, tall-stature, and big-crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large-diameter, tall-stature, and big-crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the "big-sized trees hypothesis"). Specifically, we assessed the importance of: (a) the "top 1% big-sized trees effect" relative to species richness; (b) the "99% remaining trees effect" relative to species richness; and (c) the "top 1% big-sized trees effect" relative to the "99% remaining trees effect" and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big-sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big-sized trees attributes strongly increased aboveground biomass (i.e., explained 55%-70% of the accounted variation) compared to species richness (2%-18%) and 99% remaining trees attributes (6%-10%). In addition, species richness increased aboveground biomass indirectly via increasing big-sized trees but via decreasing remaining trees. Hence, we show that the "big-sized trees effect" overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big-sized trees may be more susceptible to atmospheric drought. We argue that the effects of big-sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.


Subject(s)
Biodiversity , Trees , Biomass , China , Climate Change , Tropical Climate
9.
Sci Total Environ ; 656: 45-54, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30502734

ABSTRACT

Most of the previous studies have shown that the relationship between functional diversity and aboveground biomass is unpredictable in natural tropical forests, and hence also contrary to the predictions of niche complementarity effect. However, the direct and indirect effects of functional diversity on aboveground biomass via tree crown complementarity in natural forests remain unclear, and this potential ecological mechanism is yet to be understood across large-scale ecological gradients. Here, we hypothesized that tree crown complementarity would link positive functional diversity and aboveground biomass due to increasing species coexistence through efficient capture and use of available resources in natural tropical forests along large-scale ecological gradients. We quantified individual tree crown variation, functional divergence of tree maximum height, and aboveground biomass using data from 187,748 trees, in addition to the quantifications of climatic water availability and soil fertility across 712 tropical forests plots in Hainan Island of Southern China. We used structural equation modeling to test the tree crown complementarity hypothesis. Aboveground biomass increased directly with increasing functional diversity, individual tree crown variation and climatic water availability. As such, functional diversity enhanced individual tree crown variation, thereby increased aboveground biomass indirectly via individual tree crown variation. Additional positive effects of climatic water availability and soil fertility on aboveground biomass were accounted indirectly via increasing individual tree crown variation and/or functional diversity. This study shows that tree crown complementarity mediates the positive effect of functional diversity on aboveground biomass through light capture and use along large-scale ecological gradients in natural forests. This study also mechanistically shows that tree crown complementarity increases species coexistence through maintenance of functional diversity, which in turn enhances aboveground biomass in natural tropical forests. Hence, managing natural forests with the aim of increasing tree crown complementarity holds promise for enhancing carbon storage while conserving biodiversity in functionally-diverse communities.


Subject(s)
Biodiversity , Biomass , Forests , Trees/physiology , China
10.
Sci Total Environ ; 647: 1211-1221, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180329

ABSTRACT

Climatic water availability is a key spatial driver of species distribution patterns in natural forests. Yet, we do not fully understand the importance of climatic water availability relative to temperature, and climate relative to edaphic factors for multiple biotic attributes across large-scale elevational gradients in natural forests. Here, we modelled multiple abiotic factors (elevation, climate, and edaphic factors) with each of the taxonomic-related (Shannon's species diversity, species richness, species evenness, and Simpson's dominance) and tree size or biomass-related (individual tree size variation, functional dominance and divergence, and aboveground biomass) biotic attributes through boosted regression trees (BRT) models, using biophysical data from 247,691 trees across 907 plots in tropical forests in Hainan Island of Southern China. The tested multiple abiotic factors explained simultaneously 43, 50, 36, 45, 37, 50, 17 and 46%, respectively, of the variations in Shannon's species diversity, species richness, species evenness, Simpson's dominance, individual tree size variation, functional dominance, functional divergence and aboveground biomass. After the large influences of elevation (i.e. 30.43 to 62.83%), climatic water availability accounted for most (i.e. 15.52 to 25.30%) of the variations in all biotic attributes. Beside the increasing trend with elevational gradients, taxonomic diversity increased strongly with climatic water availability whereas tree size or biomass-related biotic attributes showed strong decreasing and increasing trends. Tree size or biomass-related rather than taxonomic-related biotic attributes also decreased apparently with mean annual temperature. Most of the biotic attributes monotonically increased with soil fertility but decreased with soil pH, whereas soil textural properties had mostly negligible influences. This study strongly reveals that future climate change (i.e. a decrease in climatic water availability with an increase in mean annual temperature) is thus likely to have a substantial influence on the biotic attributes in the studied tropical forests across large-scale elevational gradients.

11.
Environ Sci Pollut Res Int ; 18(5): 800-10, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21234808

ABSTRACT

PURPOSE: The performance of nature reserves depends on the degree to which they represent a region's full biodiversity. Here, we conducted a study on Hainan Island, China, to assess how well Hainan's biodiversity features were captured by existing nature reserves. We also explored the driving forces behind the current protection pattern so as to provide guidelines for improving the island's conservation system. METHODS: We integrated the information on nature reserves, ecological variables, and human activities into a spatial database, then assessed the performance of nature reserves in representing natural variation, vegetation types, and species, and examined the impacts of human activities and land ownership on the current protection pattern. RESULTS: About 8.4% of Hainan Island was protected by nature reserves; the coverage was geographically biased toward its central mountainous areas with higher elevation, rugged terrain, and fertile soils. We found that 60% of the environmental units and 39.4% of the natural vegetation types had more than 10% of their area protected, respectively. Lowlands tended to have higher animal species richness, and the protection for endangered species was less efficient. Nature reserve coverage was negatively correlated with amount of converted habitats, human population density, and road density, and 82.4% of the total reserved area was allocated on state-owned land. CONCLUSIONS: Nature reserve coverage was not enough to capture lowlands biodiversity features. The current protection pattern was significantly driven by several major conservation targets, human development, planning methods, and land ownership. To improve its conservation system, Hainan should enhance protection in the north and northeast plains and coastal regions, implement systematic planning approaches to define clear visions for guiding future conservation actions, and develop flexible management and funding mechanisms toward sustainable use of natural resources.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Vertebrates/physiology , Altitude , Animals , China , Environment , Environmental Monitoring , Geography , Human Activities , Soil , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL