Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 322: 121099, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36682612

ABSTRACT

To improve the predictability of concentrations of atmospheric particulate matter, a data assimilation (DA) system using ensemble square root filter (EnSRF) has been developed for the Community Multiscale Air Quality (CMAQ) model. The EnSRF DA method is a deterministic variant of the ensemble Kalman filter (EnKF) method, which means that unlike the EnKF method, it does not add random noise to the observations. To compare the performances of the EnSRF with those of other DA methods, such as EnKF and 3DVAR (three-dimensional variational), these three methods were applied to the same CMAQ model simulations with identical experimental settings. This is the first attempt in the field of chemical DA to compare the EnKF and EnSRF methods. An identical set of surface fine particulate matter (PM2.5) were assimilated every 6 h by all the DA methods over a CMAQ domain of East Asia, during the period from 01 May to 11 June 2016. In parallel with 'reanalysis experiments', we also carried out '48 h prediction experiments' using the optimized initial conditions produced by the three DA methods. Detailed analyses among the three DA methods were then carried out by comparing both the reanalysis and the prediction outputs with the observed surface PM2.5 over four regions (i.e., South Korea, the Beijing-Tianjin-Hebei (BTH) region, Shandong province, and Liaoning province). The comparison results revealed that the EnSRF produced the best reanalysis and prediction fields in terms of several statistical metrics. For example, when the 3DVAR, EnKF, and EnSRF methods were used, averaged normalized mean biases (NMBs) decreased by (57.6, 85.6, and 91.8) % in reanalyses and (39.7, 87.6, and 91.5) % in first-day predictions, compared to the CMAQ control experiment (i.e., without DA) over South Korea, respectively. Also, over the three Chinese regions, the EnSRF method outperformed the EnKF and 3DVAR methods.


Subject(s)
Air Pollution , Models, Theoretical , Air Pollution/analysis , Particulate Matter/analysis , Republic of Korea , Asia, Eastern
2.
Environ Sci Technol ; 55(24): 16326-16338, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34870986

ABSTRACT

The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , Cities , Nitrates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...