Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 855
Filter
1.
Clin Transl Med ; 14(5): e1687, 2024 May.
Article in English | MEDLINE | ID: mdl-38738791

ABSTRACT

OBJECTIVE: It has been observed that the prognosis of patients with HER2-positive metastatic breast cancer has improved significantly with HER2-targeted agents. However, there is still a lack of evidence regarding first-line anti-HER2 treatment options for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, there are no reliable markers that can predict the efficacy of anti-HER2 treatment in these patients. METHODS: Patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer were enrolled. Pyrotinib plus albumin-bound paclitaxel were used as first-line treatment. The primary endpoint was the objective response rate (ORR). The safety profile was also assessed. In order to explore predictive biomarkers using Olink technology, blood samples were collected dynamically. RESULTS: From December 2019 to August 2023, the first stage of the study involved 27 eligible patients. It has not yet reached the median PFS despite the median follow-up being 17.8 months. Efficacy evaluation showed that the ORR was 92.6%, and the DCR was 100%. Adverse events of grade 3 or higher included diarrhoea (29.6%), leukopenia (11.1%), neutropenia (25.9%), oral mucositis (3.7%), and hand-foot syndrome (3.7%). Toll-like receptor 3 (TLR3) and Proto-oncogene tyrosine-protein kinase receptor (RET) were proteins with significant relevance to PFS in these patients. CONCLUSIONS: This study demonstrates that pyrotinib plus albumin-bound paclitaxel as a first-line treatment regimen shows good efficacy and manageable safety for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, a significant association was identified between the expression levels of TLR3 and RET and the PFS in patients.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Adult , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Prospective Studies , Aged , Receptor, ErbB-2/metabolism , Albumin-Bound Paclitaxel/therapeutic use , Albumin-Bound Paclitaxel/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Acrylamides/therapeutic use , Neoadjuvant Therapy/methods , Proto-Oncogene Mas , Sulfinic Acids/therapeutic use , Sulfinic Acids/pharmacology , Aminoquinolines/therapeutic use , Aminoquinolines/pharmacology , Treatment Outcome
2.
Cancer Lett ; 593: 216930, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705566

ABSTRACT

Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.

3.
Front Endocrinol (Lausanne) ; 15: 1308208, 2024.
Article in English | MEDLINE | ID: mdl-38818502

ABSTRACT

Objective: Hypothyroidism, characterized by reduced thyroid hormone levels, and endometrial cancer, a prevalent gynecological malignancy, have been suggested to have a potential association in previous observational studies. However, the causal relationship between them remains uncertain. This study aimed to investigate the causal relationship between hypothyroidism and endometrial cancer using a bilateral Mendelian randomization approach. Methods: A bidirectional two-sample Mendelian randomization study was conducted using summary statistics from genome-wide association studies to identify genetic variants associated with hypothyroidism and endometrial cancer. The inverse variance weighting method was used as the main analysis, and sensitivity analyses were conducted to validate the MR results. Results: The results of our analysis did not support a causal effect of hypothyroidism (OR: 0.93, p=0.08) or autoimmune hypothyroidism (OR: 0.98, p=0.39) on endometrial cancer risk. In the reverse MR analysis, we did not find a significant causal effect of endometrial cancer on hypothyroidism (OR: 0.96, p=0.75) or autoimmune hypothyroidism (OR: 0.92, p=0.50). Based on subgroup analysis by pathological subtypes of endometrial cancer, the above findings were further substantiated (all p-value >0.05). Conclusions: Our Mendelian randomization analysis suggests a lack of causal association between hypothyroidism and endometrial cancer. To gain a deeper understanding of this association, it is essential to conduct large-scale randomized controlled trials in the future to validate our findings.


Subject(s)
Endometrial Neoplasms , Genome-Wide Association Study , Hypothyroidism , Mendelian Randomization Analysis , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/epidemiology , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Polymorphism, Single Nucleotide , Risk Factors
4.
Front Immunol ; 15: 1396719, 2024.
Article in English | MEDLINE | ID: mdl-38799432

ABSTRACT

Background: Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can regulate tumor proliferation and support resistance to therapy, constituting promising targets for the development of novel anticancer agents. Our previous results suggest that SHP2 plays a crucial role in reprogramming the phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker. Methods: We analyzed cancer tissue samples from 79 NSCLC patients using multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of immune cells. The immune cells proportions were quantified in the tumor regions (Tumor) and stromal regions (Stroma), as well as in the overall tumor microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall survival (OS), correlating them with levels of cell infiltration or effective density. Cox regression was used to evaluate the associations between immune cell subsets infiltration and OS. Correlations between different immune cell subsets were examined by Spearman's tests. Results: In NSCLC, the distribution of different macrophage subsets within the TME, tumor regions, and stroma regions exhibited inconsistency. The proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset proportion was positively correlated with the CD68+CD206+ subset within TME (P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001). Conclusions: The high infiltration of CD68+SHP2+ TAMs predict poor OS in NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-phenotype polarization. And it provides a new thought for SHP2 targeted cancer immunotherapy.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antigens, CD/metabolism , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Middle Aged , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Biomarkers, Tumor/metabolism , Macrophages/immunology , Macrophages/metabolism , Prognosis , Adult , CD68 Molecule
5.
Cancer Sci ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38590234

ABSTRACT

Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.

6.
BMC Cancer ; 24(1): 486, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632501

ABSTRACT

BACKGROUND: The antiviral drug Nirmatrelvir was found to be a key drug in controlling the progression of pneumonia during the infectious phase of COVID-19. However, there are very few options for effective treatment for cancer patients who have viral pneumonia. Glucocorticoids is one of the effective means to control pneumonia, but there are many adverse events. EGCG is a natural low toxic compound with anti-inflammatory function. Thus, this study was designed to investigate the safety and efficacy of epigallocatechin-3-gallate (EGCG) aerosol to control COVID-19 pneumonia in cancer populations. METHODS: The study was designed as a prospective, single-arm, open-label phase I/II trial at Shandong Cancer Hospital and Institute, between January 5, 2023 to March 31,2023 with viral pneumonia on radiographic signs after confirmed novel coronavirus infection. These patients were treated with EGCG nebulization 10 ml three times daily for at least seven days. EGCG concentrations were increased from 1760-8817umol/L to 4 levels with dose escalation following a standard Phase I design of 3-6 patients per level. Any grade adverse event caused by EGCG was considered a dose-limiting toxicity (DLT). The maximum tolerated dose (MTD) is defined as the highest dose with less than one-third of patients experiencing dose limiting toxicity (DLT) due to EGCG. The primary end points were the toxicity of EGCG and CT findings, and the former was graded by Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0. The secondary end point was the laboratory parameters before and after treatment. RESULT: A total of 60 patients with high risk factors for severe COVID-19 pneumonia (factors such as old age, smoking and combined complications)were included in this phase I-II study. The 54 patients in the final analysis were pathologically confirmed to have tumor burden and completed the whole course of treatment. A patient with bucking at a level of 1760 umol/L and no acute toxicity associated with EGCG has been reported at the second or third dose gradients. At dose escalation to 8817umol/L, Grade 1 adverse events of nausea and stomach discomfort occurred in two patients, which resolved spontaneously within 1 hour. After one week of treatment, CT showed that the incidence of non-progression of pneumonia was 82% (32/39), and the improvement rate of pneumonia was 56.4% (22/39). There was no significant difference in inflammation-related laboratory parameters (white blood cell count, lymphocyte count, IL-6, ferritin, C-reactive protein and lactate dehydrogenase) before and after treatment. CONCLUSION: Aerosol inhalation of EGCG is well tolerated, and preliminary investigation in cancer population suggests that EGCG may be effective in COVID-19-induced pneumonia, which can promote the improvement of patients with moderate pneumonia or prevent them from developing into severe pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05758571. Date of registration: 8 February 2023.


Subject(s)
COVID-19 , Catechin/analogs & derivatives , Neoplasms , Pneumonia, Viral , Humans , Oxygen , Prospective Studies , Pneumonia, Viral/epidemiology , Treatment Outcome , Respiratory Aerosols and Droplets
7.
Front Immunol ; 15: 1373330, 2024.
Article in English | MEDLINE | ID: mdl-38686383

ABSTRACT

Introduction: The variability and unpredictability of immune checkpoint inhibitors (ICIs) in treating brain metastases (BMs) in patients with advanced non-small cell lung cancer (NSCLC) is the main concern. We assessed the utility of novel imaging biomarkers (radiomics) for discerning patients with NSCLC and BMs who would derive advantages from ICIs treatment. Methods: Data clinical outcomes and pretreatment magnetic resonance images (MRI) were collected on patients with NSCLC with BMs treated with ICIs between June 2019 and June 2022 and divided into training and test sets. Metastatic brain lesions were contoured using ITK-SNAP software, and 3748 radiomic features capturing both intra- and peritumoral texture patterns were extracted. A clinical radiomic nomogram (CRN) was built to evaluate intracranial progression-free survival, progression-free survival, and overall survival. The prognostic value of the CRN was assessed by Kaplan-Meier survival analysis and log-rank tests. Results: In the study, a total of 174 patients were included, and 122 and 52 were allocated to the training and validation sets correspondingly. The intratumoral radiomic signature, peritumoral radiomic signature, clinical signature, and CRN predicted intracranial objective response rate. Kaplan-Meier analyses showed a significantly longer intracranial progression-free survival in the low-CRN group than in the high-CRN group (p < 0.001). The CRN was also significantly associated with progression-free survival (p < 0.001) but not overall survival. Discussion: Radiomics biomarkers from pretreatment MRI images were predictive of intracranial response. Pretreatment radiomics may allow the early prediction of benefits.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Magnetic Resonance Imaging , Nomograms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Magnetic Resonance Imaging/methods , Male , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Female , Middle Aged , Aged , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Prognosis , Treatment Outcome , Adult
8.
Article in English | MEDLINE | ID: mdl-38447611

ABSTRACT

PURPOSE: Stereotactic body radiation therapy (SBRT) versus surgery for operable early-stage non-small cell lung cancer (ES-NSCLC) remains highly debated. Herein, we used spatial proteomics to identify whether any molecular biomarker(s) associate with the efficacy of either modality, in efforts to optimize treatment selection between surgery and SBRT for this population. METHODS AND MATERIALS: We evaluated biopsy tissue samples from 44 patients with ES-NSCLC treated with first-line SBRT (cohort 1) by GeoMx Digital Spatial Profiling (DSP) with a panel of 70 proteins in 5 spatial molecular compartments: tumor (panCK+), leukocyte (CD45+), lymphocyte (CD3+), macrophage (CD68+), and stroma (α-SMA+). To validate the findings in cohort 1, biopsy samples from 52 patients with ES-NSCLC who received SBRT (cohort 2) and 62 patients with ES-NSCLC who underwent surgery (cohort 3) were collected and analyzed by multiplex immunofluorescence (mIF). RESULTS: In cohort 1, higher CD44 expression in the lymphocyte compartment was associated with poorer recurrence-free survival (RFS) (DSP: P < .001; mIF: P < .001) and higher recurrence rate (DSP: P = .001; mIF: P = .004). mIF data from cohort 2 validated these findings (P < .05 for all). From cohort 3, higher lymphocyte CD44 predicted higher RFS after surgery (P = .003). Intermodality comparisons demonstrated that SBRT was associated with significantly higher RFS over surgery in CD44-low patients (P < .001), but surgery was superior to SBRT in CD44-high cases (P = .016). CONCLUSIONS: Lymphocyte CD44 may not only be a predictor of SBRT efficacy in this population but also an important biomarker (pending validation by large prospective data) that could better sharpen selection for SBRT versus surgery in ES-NSCLC.

10.
Cancer Lett ; 589: 216824, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522774

ABSTRACT

Immunotherapy, especially immune checkpoint inhibitors, has revolutionized clinical practice within the last decade. However, primary and secondary resistance to immunotherapy is common in patients with diverse types of cancer. It is well-acknowledged that tumor cells can facilitate the formation of immunosuppressive microenvironments via metabolism reprogramming, and lactic acid, the metabolite of glycolysis, is a significant contributor. SLC16A3 (also named as MCT4) is a transporter mediating lactic acid efflux. In this study, we investigated the role of glycolysis in immunotherapy resistance and aimed to improve the immunotherapy effects via Slc16a3 inhibition. Bioinformatical analysis revealed that the expression of glycolysis-related genes correlated with less CD8+ T cell infiltration and increased myeloid-derived suppressor cells (MDSC) enrichment. We found that high glycolytic activity in tumor cells adversely affected the antitumor immune responses and efficacy of immunotherapy and radiotherapy. As the transporter of lactic acid, SLC16A3 is highly expressed in glycolytic B16-F10 (RRID: CVCL_0159) cells, as well as human non-small cell lung carcinoma. We validated that Slc16a3 expression in tumor cells negatively correlated with anti-PD-1 efficiency. Overexpression of Slc16a3 in tumor cells promoted lactic acid production and efflux, and reduced tumor response to anti-PD-1 inhibitors by inhibiting CD8+ T cell function. Genetic and pharmacological inhibition of Slc16a3 dramatically reduced the glycolytic activity and lactic acid production in tumor cells, and ameliorated the immunosuppressive tumor microenvironments (TMEs), leading to boosted antitumor effects via anti-PD-1 blockade. Our study therefore demonstrates that tumor cell-intrinsic SLC16A3 may be a potential target to reverse tumor resistance to immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Immunotherapy , Lactic Acid/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Tumor Microenvironment
11.
Reprod Biol Endocrinol ; 22(1): 31, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509558

ABSTRACT

BACKGROUND: The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS: Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS: Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS: Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.


Subject(s)
Liraglutide , Testis , Mice , Animals , Male , Testis/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Mice, Obese , Semen Analysis , Blood Glucose , Semen/metabolism , Body Weight , Obesity , Gonadal Steroid Hormones , Luteinizing Hormone , Testosterone , Follicle Stimulating Hormone , Insulin
12.
J Exp Clin Cancer Res ; 43(1): 74, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459595

ABSTRACT

Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Neoplasms/pathology , Energy Metabolism , Tumor Microenvironment
13.
Br J Radiol ; 97(1157): 980-992, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38547402

ABSTRACT

OBJECTIVES: To develop a mapping model between skin surface motion and internal tumour motion and deformation using end-of-exhalation (EOE) and end-of-inhalation (EOI) 3D CT images for tracking lung tumours during respiration. METHODS: Before treatment, skin and tumour surfaces were segmented and reconstructed from the EOE and the EOI 3D CT images. A non-rigid registration algorithm was used to register the EOE skin and tumour surfaces to the EOI, resulting in a displacement vector field that was then used to construct a mapping model. During treatment, the EOE skin surface was registered to the real-time, yielding a real-time skin surface displacement vector field. Using the mapping model generated, the input of a real-time skin surface can be used to calculate the real-time tumour surface. The proposed method was validated with and without simulated noise on 4D CT images from 15 patients at Léon Bérard Cancer Center and the 4D-lung dataset. RESULTS: The average centre position error, dice similarity coefficient (DSC), 95%-Hausdorff distance and mean distance to agreement of the tumour surfaces were 1.29 mm, 0.924, 2.76 mm, and 1.13 mm without simulated noise, respectively. With simulated noise, these values were 1.33 mm, 0.920, 2.79 mm, and 1.15 mm, respectively. CONCLUSIONS: A patient-specific model was proposed and validated that was constructed using only EOE and EOI 3D CT images and real-time skin surface images to predict internal tumour motion and deformation during respiratory motion. ADVANCES IN KNOWLEDGE: The proposed method achieves comparable accuracy to state-of-the-art methods with fewer pre-treatment planning CT images, which holds potential for application in precise image-guided radiation therapy.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Skin , Humans , Lung Neoplasms/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Skin/diagnostic imaging , Inhalation , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Exhalation/physiology , Imaging, Three-Dimensional/methods , Respiration , Tomography, X-Ray Computed/methods
14.
Cell Death Discov ; 10(1): 139, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485739

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) remains an important health concern in developing countries. Patients with advanced ESCC have a poor prognosis and survival rate, and achieving early diagnosis remains a challenge. Metabolic biomarkers are gradually gaining attention as early diagnostic biomarkers. Hence, this multicenter study comprehensively evaluated metabolism dysregulation in ESCC through an integrated research strategy to identify key metabolite biomarkers of ESCC. First, the metabolic profiles were examined in tissue and serum samples from the discovery cohort (n = 162; ESCC patients, n = 81; healthy volunteers, n = 81), and ESCC tissue-induced metabolite alterations were observed in the serum. Afterward, RNA sequencing of tissue samples (n = 46) was performed, followed by an integrated analysis of metabolomics and transcriptomics. The potential biomarkers for ESCC were further identified by censoring gene-metabolite regulatory networks. The diagnostic value of the identified biomarkers was validated in a validation cohort (n = 220), and the biological function was verified. A total of 457 dysregulated metabolites were identified in the serum, of which 36 were induced by tumor tissues. The integrated analyses revealed significant alterations in the purine salvage pathway, wherein the abundance of hypoxanthine/xanthine exhibited a positive correlation with HPRT1 expression and tumor size. A diagnostic model was developed using two purine salvage-associated metabolites. This model could accurately discriminate patients with ESCC from normal individuals, with an area under the curve (AUC) (95% confidence interval (CI): 0.680-0.843) of 0.765 in the external cohort. Hypoxanthine and HPRT1 exerted a synergistic effect in terms of promoting ESCC progression. These findings are anticipated to provide valuable support in developing novel diagnostic approaches for early ESCC and enhance our comprehension of the metabolic mechanisms underlying this disease.

15.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189084, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354828

ABSTRACT

Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Immunotherapy , Interleukins/therapeutic use , Adjuvants, Immunologic/therapeutic use , Neoplasms/pathology
16.
Cancer Lett ; 587: 216723, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38342234

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Proliferation/genetics , Prognosis
17.
BMC Cancer ; 24(1): 197, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347438

ABSTRACT

BACKGROUND: The superior efficacy of concurrent thoracic radiotherapy (TRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has been proven in locally advanced and advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, the high incidence of radiation pneumonitis (RP) reduced by concurrent TRT and TKIs has attracted widespread attention. Thus, this study was designed to investigate the rate and risk factors for RP in EGFR-positive NSCLC patients simultaneously treated with aumolertinib and TRT. METHODS: We retrospectively evaluated stage IIIA-IVB NSCLC patients treated with concurrent aumolertinib and TRT between May 2020 and December 2022 at Shandong Cancer Hospital and Institute, Shandong, China. RP was diagnosed by two senior radiologists and then graded from 1 to 5 according to the Common Terminology Criteria for Adverse Events v5.0. All risk factors were evaluated by univariate and multivariate logistic regression analyses. RESULTS: A total of 49 patients were included, the incidence of grade ≥ 2 RP was 42.9%. Grade 2 and 3 RP were observed in 28.6% and 14.3% of patients, respectively. Grade 4 to 5 RP were not observed. the gross total volume (GTV) ≥ 21 ml and ipsilateral lung V20 ≥ 25% were risk factors for RP. The median progression-free survival (PFS) in the first-line therapy group and second-line therapy group were 23.5 months and 17.2 months, respectively (p = 0.10). CONCLUSIONS: Better local control is achieved with concurrent TRT and aumolertinib, and special attention should be given to controlling ipsilateral lung V20 and GTV to reduce the risk of RP.


Subject(s)
Acrylamides , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Radiation Pneumonitis , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Radiation Pneumonitis/epidemiology , Radiation Pneumonitis/etiology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Retrospective Studies , Radiotherapy Dosage , ErbB Receptors/genetics
18.
Mol Oncol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38327028

ABSTRACT

Stage pIIIA/N2 non-small cell lung cancer (NSCLC) is primarily treated by complete surgical resection combined with neoadjuvant/adjuvant therapies. However, up to 40% of patients experience tumor recurrence. Here, we studied 119 stage pIIIA/N2 NSCLC patients who received complete surgery plus adjuvant chemotherapy (CT) or chemoradiotherapy (CRT). The paired tumor and resection margin samples were analyzed using next-generation sequencing (NGS). Although all patients were classified as negative resection margins by histologic methods, NGS revealed that 47.1% of them had molecularly positive surgical margins. Patients who tested positive for NGS-detected residual tumors had significantly shorter disease-free survival (DFS) (P = 0.002). Additionally, metastatic lymph node ratio, erb-b2 receptor tyrosine kinase 2 (ERBB2) mutations, and SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) mutations were also independently associated with DFS. We used these four features to construct a COX model that could effectively estimate recurrence risk and prognosis. Notably, mutational profiling through broad-panel NGS could more sensitively detect residual tumors than the conventional histologic methods. Adjuvant CT and adjuvant CRT exhibited no significant difference in eliminating locoregional recurrence risk for stage pIIIA/N2 NSCLC patients with molecularly positive surgical margins.

19.
Biol Trace Elem Res ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374330

ABSTRACT

Copper is an essential trace element obtained from food. There is a paucity of observational or prospective studies that have investigated the relationship between copper and melanoma risk. Copper serves as a cofactor for pivotal enzymes involved in mitochondrial respiration, antioxidant defense, and neurotransmitter synthesis. Undoubtedly, copper plays an indispensable role in the initiation and progression of tumors, particularly melanoma; however, further investigations are warranted to elucidate the underlying mechanisms linking copper and melanoma risk. Given the availability of dietary copper and serum copper data in the NHANES database, we conducted an investigation into the association between dietary copper intake and serum copper levels with melanoma risk. We enrolled 26,401 individuals with dietary copper data in the 2007-2018 NHANES database. To mitigate confounding variables, a propensity score matching (PSM) was performed. To assess the association between dietary copper intake and melanoma risk, we employed a multivariate logistic regression analysis before and after PSM. The restricted cubic spline analysis was utilized to determine whether there is a non-linear relationship between dietary copper intake and melanoma risk, with subgroup analysis conducted to determine beneficiaries. Then, those with blood copper data from the enrolled population with dietary copper intake were screened out, and subsequently, multivariate logistic regression models were subsequently constructed to investigate the association between serum copper levels and melanoma risk after PSM. Mendelian analysis was further utilized to validate the results of the NHANES database using serum copper as the exposure factor and melanoma as the outcome variable. The study found that melanoma risk was associated with dietary copper intake before and after PSM, demonstrated by multiple logistic regression. The relationship between dietary copper intake and melanoma risk was non-linear, with a reduced risk observed above approximately 2.5 mg/day, as shown by the RCS. The evidence suggests that an increased intake of copper is linked to a decreased risk of melanoma. To clarify the mechanism behind the increased risk of melanoma due to higher dietary copper intake, we analyzed the population data from the NHANES database on serum copper and dietary copper intake. Our results indicated that there is no causal relationship between serum copper and melanoma risk. Mendelian randomization analysis of multi-database data sources confirmed the conclusion of the NHANES database analysis. Dietary copper is a protective factor against melanoma, and serum copper or blood copper is not associated with melanoma risk. This suggests that serum or blood copper is not responsible for the protective effect of dietary copper intake on melanoma risk, and the mechanisms need to be further investigated.

20.
BMC Vet Res ; 20(1): 43, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308297

ABSTRACT

BACKGROUND: Bovine viral diarrhea (BVD) is an acute febrile infectious disease caused by the bovine viral diarrhea virus (BVDV), which has brought huge economic losses to the world's cattle industry. At present, commercial inactivated BVDV vaccines may cause some adverse reactions during use. This study aims to develop a safer and more efficient inactivated BVDV vaccine. METHODS: Here, we described the generation and preclinical efficacy of a hydrogen peroxide (H2O2) inactivated BVDV type 1 vaccine in mice, and administered it separately with commercial vaccine (formaldehyde inactivated) in mice to study its efficacy. RESULTS: The BVDV type 1 IgG, IFN- γ, IL-4 and neutralizing antibody in the serum of the H2O2 inactivated vaccine group can be maintained in mice for 70 days. The IgG level reached its maximum value of 0.67 on the 42nd day, significantly higher than the commercial formaldehyde inactivated BVDV type 1 vaccine. IFN- γ and IL-4 reached their maximum values on the 28th day after immunization, at 123.16 pg/ml and 143.80 pg/ml, respectively, slightly higher than commercial vaccines, but the effect was not significant. At the same time the BVDV-1 neutralizing antibody titer reached a maximum of 12 Nu on the 42nd day post vaccination. CONCLUSIONS: The H2O2 inactivated BVDV vaccine has good safety and immunogenicity, which provides a potential solution for the further development of an efficient and safe BVDV vaccine.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Viral Vaccines , Animals , Cattle , Mice , Antibodies, Neutralizing , Antibodies, Viral , Diarrhea/veterinary , Formaldehyde , Hydrogen Peroxide , Immunoglobulin G , Interleukin-4 , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL
...