Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 22(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786593

ABSTRACT

α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.


Subject(s)
Brain , Conotoxins , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Conotoxins/pharmacology , Conotoxins/chemistry , Rats , Brain/metabolism , Brain/drug effects , Oocytes/drug effects , Oocytes/metabolism , Nicotinic Antagonists/pharmacology , Fluorescent Dyes , Rats, Sprague-Dawley , Male , Female
2.
Int J Biol Macromol ; 271(Pt 1): 132472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772455

ABSTRACT

The two most active disulfide bond isomers of the analgesic αO-conotoxin GeXIVA, namely GeXIVA[1, 2] and GeXIVA[1, 4], were subjected to Asp-scanning mutagenesis to determine the key amino acid residues for activity at the rat α9α10 nicotinic acetylcholine receptor (nAChR). These studies revealed the key role of arginine residues for the activity of GeXIVA isomers towards the α9α10 nAChR. Based on these results, additional analogues with 2-4 mutations were designed and tested. The analogues [T1A,D14A,V28K]GeXIVA[1, 2] and [D14A,I23A,V28K]GeXIVA[1, 4] were developed and showed sub-nanomolar activity for the α9α10 nAChR with IC50 values of 0.79 and 0.38 nM. The latter analogue had exceptional selectivity for the α9α10 receptor subtype over other nAChR subtypes and can be considered as a drug candidate for further development. Molecular dynamics of receptor-ligand complexes allowed us to make deductions about the possible causes of increases in the affinity of key GeXIVA[1, 4] mutants for the α9α10 nAChR.


Subject(s)
Arginine , Aspartic Acid , Conotoxins , Receptors, Nicotinic , Conotoxins/chemistry , Conotoxins/genetics , Conotoxins/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Animals , Arginine/chemistry , Rats , Aspartic Acid/chemistry , Aspartic Acid/genetics , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/pharmacology , Molecular Dynamics Simulation , Mutagenesis , Isomerism
3.
Bioresour Technol ; 393: 130124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040310

ABSTRACT

The low current density impedes the practical application of microbial electrosynthesis for CO2 fixation. Engineering the reactor design is an effective way to increase the current density, especially for H2-mediated microbial electrosynthesis reactors. The electrolytic bubble column microbial electrosynthesis reactor has shown great potential for scaling up, but the mixing and gas mass transfer still need to be enhanced to further increase the current density. Here, we introduced an inner draft tube to the bubble column to tackle the problem. The addition of draft tube resulted in a 76.6% increase in the volumetric mass transfer coefficient (kLa) of H2, a 40% increase in the maximum current density (337 A/m2) and a 72% increase in average acetate production rate (3.1 g/L/d). The computational fluid dynamics simulations showed that the addition of draft tube enhanced mixing efficiency by enabling a more ordered cyclic flow pattern and a more uniform gas/liquid distribution. These results indicate that the electro-bubble column reactor with draft tube holds great potential for industrial implementation.


Subject(s)
Bioreactors , Carbon Dioxide , Acetates
4.
Bioresour Technol ; 388: 129728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683710

ABSTRACT

Both in-situ and ex-situ electrolytic H2 supply have been used for biomethane production from CO2. However, the pros and cons of them have not been systematically compared. The present study makes this comparison using a 20 L continuous stirred-tank reactor equipped with external and internal electrolyzers. Compared to the ex-situ H2 supply, the in-situ electrolytic H2 bubbles were one order of magnitude smaller, which resulted in improved H2 mass transfer and biomass growth. Consequently, the methane production rate and the coulombic efficiency of the in-situ H2 supply (0.51 L·L-1·d-1, 96%) were higher than those of the ex-situ H2 supply (0.30 L·L-1·d-1, 56%). However, due to high internal resistance, the energy consumption for the in-situ electrolysis was 2.54 times higher than the ex-situ electrolysis. Therefore, the in-situ electrolytic H2 supply appears to be more promising, but reducing energy consumption is the key to the success of this technology.


Subject(s)
Carbon Dioxide , Methane , Electrolysis , Bioreactors , Biomass , Hydrogen , Biofuels
5.
IEEE Trans Cybern ; PP2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747871

ABSTRACT

This article presents an event-triggered adaptive NN command-filtered control for a class of multi-input and multi-output (MIMO) nonlinear systems with unknown rate-dependent hysteresis in the actuator and the constraints on full states. The ETM is used to reduce the communication frequency between controller and actuator. The command filter technique is first employed to solve the dilemma between the nondifferentiable control signal at triggering instants and rate-dependent hysteresis input premise while avoiding the "explosion of complexity" problem. During the backstepping design, the barrier Lyapunov functions are utilized to guarantee that system states will stay in certain regions and the unknown nonlinear items are approximated by adaptive neural networks. The compensating signals are constructed to eliminate filtering errors. The estimates of unknown hysteresis parameters are updated by adaptive laws. The stability analysis is given and the effectiveness of the proposed method is verified by simulation.

6.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37748043

ABSTRACT

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Subject(s)
Conotoxins , Conus Snail , Receptors, Nicotinic , Rats , Animals , Receptors, Nicotinic/chemistry , Conotoxins/chemistry , Conotoxins/pharmacology , Conus Snail/chemistry , Peptides/chemistry , Esters
7.
Nat Commun ; 14(1): 5010, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37591882

ABSTRACT

The sole situation of semi-crystalline structure induced single performance remarkably limits the green cryogels in the application of soft devices due to uncontrolled freezing field. Here, a facile strategy for achieving multifunctionality of cryogels is proposed using total amorphization of polymer. Through precisely lowering the freezing point of precursor solutions with an antifreezing salt, the suppressed growth of ice is achieved, creating an unusually weak and homogenous aggregation of polymer chains upon freezing, thereby realizing the tunable amorphization of polymer and the coexistence of free and hydrogen bonding hydroxyl groups. Such multi-scale microstructures trigger the integrated properties of tissue-like ultrasoftness (Young's modulus <10 kPa) yet stretchability, high transparency (~92%), self-adhesion, and instantaneous self-healing (<0.3 s) for cryogels, along with superior ionic-conductivity, antifreezing (-58 °C) and water-retention abilities, pushing the development of skin-like cryogel electronics. These concepts open an attractive branch for cryogels that adopt regulated crystallization behavior for on-demand functionalities.

8.
Mar Drugs ; 21(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37233480

ABSTRACT

α4/6-conotoxin TxID, which was identified from Conus textile, simultaneously blocks rat (r) α3ß4 and rα6/α3ß4 nicotinic acetylcholine receptors (nAChRs) with IC50 values of 3.6 nM and 33.9 nM, respectively. In order to identify the effects of loop2 size on the potency of TxID, alanine (Ala) insertion and truncation mutants were designed and synthesized in this study. An electrophysiological assay was used to evaluate the activity of TxID and its loop2-modified mutants. The results showed that the inhibition of 4/7-subfamily mutants [+9A]TxID, [+10A]TxID, [+14A]TxID, and all the 4/5-subfamily mutants against rα3ß4 and rα6/α3ß4 nAChRs decreased. Overall, ala-insertion or truncation of the 9th, 10th, and 11th amino acid results in a loss of inhibition and the truncation of loop2 has more obvious impacts on its functions. Our findings have strengthened the understanding of α-conotoxin, provided guidance for further modifications, and offered a perspective for future studies on the molecular mechanism of the interaction between α-conotoxins and nAChRs.


Subject(s)
Conotoxins , Conus Snail , Receptors, Nicotinic , Rats , Animals , Conotoxins/chemistry , Conus Snail/chemistry , Receptors, Nicotinic/metabolism , Alanine , Nicotinic Antagonists/pharmacology , Nicotinic Antagonists/chemistry
9.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239959

ABSTRACT

Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3ß2ß3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3ß2ß3 nAChR but also human α6/α3ß4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and ß4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3ß4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]ß4L107V, V115I was 22.5 µM, a 42-fold decrease in potency compared to the native hα6/α3ß4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human ß4 subunit, together, were found to determine the species differences in the α6/α3ß4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.


Subject(s)
Conotoxins , Conus Snail , Receptors, Nicotinic , Rats , Humans , Animals , Species Specificity , Conotoxins/pharmacology , Conotoxins/chemistry , Conus Snail/chemistry , Polymerase Chain Reaction , Receptors, Nicotinic/metabolism
10.
Ecotoxicol Environ Saf ; 253: 114631, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36796206

ABSTRACT

Heavy metal pollution, including that caused by cadmium (Cd), is a matter of increasing concern. Although in situ passivation remediation has been widely used to treat heavy metal-polluted soils, most studies have focused on acidic soils, while studies on alkaline soil conditions are scarce. In this study, the effects of biochar (BC), phosphate rock powder (PRP), and humic acid (HA) on Cd2+ adsorption were examined alone and in combination to choose an appropriate Cd passivation approach for weakly alkaline soils. Additionally, the combined impact of passivation on Cd availability, plant Cd absorption, plant physiology indexes, and soil microbial community was elucidated. BC had a higher Cd adsorption capacity and removal rate than those of PRP and HA. Moreover, HA and PRP enhanced the adsorption capacity of BC. A combination of biochar and humic acid (BHA), and biochar and phosphate rock powder (BPRP) significantly affected soil Cd passivation. BHA and BPRP decreased the plant Cd content and soil Cd-DTPA (diethylenetriaminepentaacetic acid) by 31.36 %, 20.80 %, 38.19 %, and 41.26 %, respectively; however, they increased the fresh weight by 65.64-71.48 % respectively, and dry weight by 62.41-71.35 %, respectively. Notably, only BPRP increased the node and root tip number in wheat. Total protein (TP) content increased in BHA and BPRP, with BHA showing lower TP than BPRP. BHA and BPRP showed a reduction in glutathione (GSH), malondialdehyde (MDA), H2O2, and peroxidase (POD); BHA showed a significantly lower GSH than BPRP. Additionally, BHA and BPRP increased soil sucrase, alkaline phosphatase, and urease activities, with BPRP showing considerably higher enzyme activity than BHA. Both BHA and BPRP increased the number of soil bacteria, altered the community composition, and critical metabolic pathways. The results demonstrated that BPRP could be used as a highly effective, novel passivation technique for the remediation of Cd-contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Soil , Humic Substances , Hydrogen Peroxide , Powders , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal , Phosphates
11.
J Med Chem ; 66(3): 2020-2031, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36682014

ABSTRACT

α6ß4 nicotinic acetylcholine receptors (nAChRs) are expressed in the central and peripheral nervous systems, but their functions are not fully understood, largely because of a lack of specific ligands. Here, we characterized a novel α-conotoxin, LvIC, and designed a series of analogues to probe structure-activity relationships at the α6ß4 nAChR. The potency and selectivity of these conotoxins were tested using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes. One of the analogues, [D1G,ΔQ14]LvIC, potently blocked α6/α3ß4 nAChRs (α6/α3 is a chimera) with an IC50 of 19 nM, with minimal activity at other nAChR subtypes, including the structurally similar α6/α3ß2ß3 and α3ß4 subtypes. Using NMR, molecular docking, and receptor mutation, structure-activity relationships of [D1G,ΔQ14]LvIC at the α6/α3ß4 nAChR were defined. It is a potent and specific antagonist of α6ß4 nAChRs that could potentially serve as a novel molecular probe to explore α6ß4 nAChR-related neurophysiological and pharmacological functions.


Subject(s)
Conotoxins , Receptors, Nicotinic , Rats , Animals , Conotoxins/chemistry , Molecular Docking Simulation , Oocytes , Nicotinic Antagonists/pharmacology , Nicotinic Antagonists/chemistry , Receptors, Nicotinic/chemistry , Xenopus laevis
12.
IEEE Trans Neural Netw Learn Syst ; 34(8): 5171-5180, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34587102

ABSTRACT

This article proposes an adaptive fuzzy neural network (NN) command filtered impedance control for constrained robotic manipulators with disturbance observers. First, barrier Lyapunov functions are introduced to handle the full-state constraints. Second, the adaptive fuzzy NN is introduced to handle the unknown system dynamics and a disturbance observer is designed to eliminate the effect of unknown bound disturbance. Then, a modified auxiliary system is designed to suppress the input saturation effect. In addition, the command filtered technique and error compensation mechanism are used to directly obtain the derivative of the virtual control law and improve the control accuracy. The barrier Lyapunov theory is used to prove that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded. Finally, simulation studies are performed to illustrate the effectiveness of the proposed control method.

13.
IEEE Trans Cybern ; 53(4): 2301-2310, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34637391

ABSTRACT

In this article, an adaptive neural-network (NN) command-filtered output-feedback control strategy is proposed for a class of stochastic nonlinear systems (SNSs) with the actuator constraint. The problem of "explosion of complexity" existing in the conventional backstepping design procedure for SNSs is successfully resolved based on the command filter technique, and the error compensation mechanism is introduced to remove effectively the influence of filtered error. By using the NNs to identify the unknown nonlinear functions, a neural-network-based state observer is designed to estimate the unmeasurable states of the SNSs. Based on the quartic Lyapunov function, the stability of stochastic closed-loop systems is analyzed. It is proved that all signals of the closed-loop systems are bounded in probability, and the tracking error approaches a small neighborhood of the origin in probability. Finally, the effectiveness of the developed control algorithm in this article is verified by a comparison example.

14.
IEEE Trans Neural Netw Learn Syst ; 34(10): 8116-8123, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35108211

ABSTRACT

This brief is concerned with neural network (NN)-based adaptive finite-time output feedback attitude tracking control for rigid spacecraft in the presence of actuator saturation, inertial uncertainty, and external disturbance. First, a neural state observer is designed to estimate the unknown state. Then, based on the estimated state, the adaptive neural finite-time command filtered backstepping (CFB) is applied to construct virtual control signal and controller with updating law. The finite-time command filter is given to avoid the computation complexity problem in traditional backstepping, and the compensation signals based on fractional power are constructed to remove filtering errors. Using Lyapunov stability theory, we show that the attitude tracking error (TE) can converge into the desired neighborhood of the origin in finite time and all the signals in the closed-loop system are bounded in finite time although input saturation exists. The numerical simulations are used to show the effectiveness of the given algorithm.

15.
Article in English | MEDLINE | ID: mdl-36455095

ABSTRACT

This brief presents a modified event-triggered command filter backstepping tracking control scheme for a class of uncertain nonlinear systems with unknown input saturation based on the adaptive neural network (NN) technique. First, the virtual control functions are reconstructed to address the uncertainties in subsystems by using command filters. A piecewise continuous function is employed to deal with the unknown input saturation problem. Next, an event-triggered tracking controller is developed by utilizing the adaptive NN technique. Compared with standard NN control schemes based on multiple-function-approximators, our controller only requires a single NN. The closed-loop system stability is analyzed based on the Lyapunov stability theorem, and it is shown that the Zeno behavior is also avoided under the designed event-triggering mechanism. Simulation studies are performed to validate the effectiveness of our controller.

16.
Ecotoxicol Environ Saf ; 248: 114335, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36442399

ABSTRACT

Recently, there has been increasing concern about the health hazards of heavy metal-polluted farmlands. Recent findings suggest that intercropping could be effective remediation strategy for agricultural soils without affecting crop biomass yield. However, there are concerns on the heavy metal accumulation in plant organs in phytoremediation, emphasizing the need to develop an effective intercropping remediation model. In this study, we evaluated the effects of intercropping rape and wheat with different accumulation characteristics of cadmium (Cd), and crop growth and physiological characteristics. Intercropping significantly reduced the Cd content of rape shoot and root, with the rape-low Cd-accumulating wheat intercropping system yielding the best results. However, intercropping had no significant effect on Cd accumulation in wheat. Additionally, intercropping affected the root system configuration and structure, photosynthetic indicators, chlorophyll content, crop enzyme content, and rhizosphere enzyme activity of both species, but did not significantly affect the biomass of wheat and rape. Overall, our findings showed that intercropping rape with a low Cd-accumulating wheat variety could be an effective model for safe production of wheat and rape in weak alkaline soils without compromising biomass yield. The study demonstrates that similar innovative, effective, and judicious intercropping strategy can enrich the theory of contaminated soil remediation.


Subject(s)
Rape , Triticum , Cadmium , Soil , Biomass
17.
Article in English | MEDLINE | ID: mdl-36121955

ABSTRACT

This article investigates the problem of command-filtered event-triggered adaptive fuzzy neural network (FNN) output feedback control for stochastic nonlinear systems (SNSs) with time-varying asymmetric constraints and input saturation. By constructing quartic asymmetric time-varying barrier Lyapunov functions (TVBLFs), all the state variables are not to transgress the prescribed dynamic constraints. The command-filtered backstepping method and the error compensation mechanism are combined to eliminate the issue of "computational explosion" and compensate the filtering errors. An FNN observer is developed to estimate the unmeasured states. The event-triggered mechanism is introduced to improve the efficiency in resource utilization. It is shown that the tracking error can converge to a small neighborhood of the origin, and all signals in the closed-loop systems are bounded. Finally, a physical example is used to verify the feasibility of the theoretical results.

18.
Bioresour Technol ; 363: 127817, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36031120

ABSTRACT

Cd and Zn contamination in water occurs frequently that threatens water supply, human health, and food production. MnFeB, a novel absorbent biochar modified using KMnO4 and hematite, was prepared and used for the treatment of Cd2+ and Zn2+solutions. MnFeB exhibits a rough surface structure, large specific surface area, higher total pore volume, massive functional groups, and abundant iron oxide, all of which contribute to higher Cd2+ and Zn2+ adsorption capacity. In single metal systems, maximum Cd2+ and Zn2+ adsorption capacities of MnFeB were 1.88 and 1.79 times higher than those of unmodified biochar (CSB). The maximum Cd2+ and Zn2+ adsorption capacities of MnFeB were 2.73 and 2.65 times higher than CSB in the binary metal system. Key adsorption mechanisms of Cd2+ and Zn2+ by MnFeB included electrostatic interaction, co-precipitation, π-π interaction, complexation, and ion exchange. Thus, MnFeB can be used as a novel absorbent to treat Cd and Zn-polluted water.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Cadmium/chemistry , Charcoal/chemistry , Humans , Water , Water Pollutants, Chemical/chemistry , Zinc
19.
Chemosphere ; 306: 135582, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35803376

ABSTRACT

A variety of plants have been used as phytoremediation materials to remove Cd from polluted soil. However, the disadvantages of using plants for decontamination include low biomass, low uptake, and inefficiency. We conducted experiments to determine the effects of spermidine and activated carbon treatments of Salix integra on Cd removal. The results showed that exogenous spermidine and activated carbon increased plant growth and root development compared with the CK. The increased dry mass (39.65-92.95%) with the combined spermidine and activated carbon treatments was higher than that with either single treatment (14.79-62.80%). The root length, surface area, root volume, and root diameter with the combined spermidine and activated carbon treatments (53.51-189.35%, 113.08-207.62%, 111.71-499.27%, and 32.51-106.62%, respectively) were higher than those of the lone application treatments (19.35-132.23%, 52.33-111.57%, 35.08-297.07%, and 24.22-81.38%, respectively). In addition, spermidine and activated carbon application reduced the toxicity of Cd to S. integra by improving the antioxidant capacity, thereby increasing the accumulation of Cd. The application of spermidine and activated carbon also changed the distribution of Cd in each part of S. integra. There was increased accumulation of Cd in the shoots and better absorption by the S. integra shoots, thereby improving their Cd remediation efficiency. The combined 0.8 mM spermidine and 0.5 g kg-1 activated carbon were most effective on removing Cd from the soil. The Cd removal efficiency was 78.11-120.86% higher than that of the CK. Our results may provide foundational information for understanding the mechanisms for the sustainable remediation of Cd-contaminated soil using a combination of spermidine and activated carbon.


Subject(s)
Salix , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Charcoal/pharmacology , Soil , Soil Pollutants/analysis , Spermidine/pharmacology , Technology
20.
Article in English | MEDLINE | ID: mdl-35679382

ABSTRACT

The control design method for a class of non-strict feedback nonlinear systems is studied in this brief considering uncertain nonlinearities and unknown non-symmetrical input dead-zone. Combining with the finite-time command filtered backstepping (FCFB) technique, a novel finite-time adaptive control approach is proposed in which a neural network-based methodology is adopted to cope with the uncertain nonlinearities in the non-strict feedback form. The input dead-zone model is transformed into a simple linear system with unknown gain and bounded disturbance which is estimated by an adaptive factor. Using the finite-time Lyapunov theory, the system convergence is proved. And the effectiveness of the proposed control scheme is verified through comparative numerical simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...