Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Neurobiol ; 86: 102866, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852986

ABSTRACT

A variety of organisms exhibit collective movement, including schooling fish and flocking birds, where coordinated behavior emerges from the interactions between group members. Despite the prevalence of collective movement in nature, little is known about the neural mechanisms producing each individual's behavior within the group. Here we discuss how a neurobiological approach can enrich our understanding of collective behavior by determining the mechanisms by which individuals interact. We provide examples of sensory systems for social communication during collective movement, highlight recent discoveries about neural systems for detecting the position and actions of social partners, and discuss opportunities for future research. Understanding the neurobiology of collective behavior can provide insight into how nervous systems function in a dynamic social world.


Subject(s)
Neurobiology , Social Behavior , Animals , Behavior, Animal/physiology , Humans , Animal Communication
2.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961196

ABSTRACT

Many animals move in groups, where collective behavior emerges from the interactions amongst individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually-based schooling behavior of the micro glassfish Danionella cerebrum, here we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners. This social maturation was accompanied by the development of neural populations in the midbrain and forebrain that were preferentially driven by visual stimuli that resemble the shape and movements of schooling fish. The development of these neural circuits enables the social coordination required for collective movement.

3.
EMBO Rep ; 24(10): e56839, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37531065

ABSTRACT

The formation of social memory between individuals of the opposite sex is crucial for expanding mating options or establishing monogamous pair bonding. A specialized neuronal circuit that regulates social memory could enhance an individual's mating opportunities and provide a parallel pathway for computing social behaviors. While the influence of light exposure on various forms of memory, such as fear and object memory, has been studied, its modulation of social recognition memory remains unclear. Here, we demonstrate that acute exposure to light impairs social recognition memory (SRM) in mice. Unlike sound and touch stimuli, light inhibits oxytocin neurons in the supraoptic nucleus (SON) via M1 SON-projecting intrinsically photosensitive retinal ganglion cells (ipRGCs) and GABAergic neurons in the perinuclear zone of the SON (pSON). We further show that optogenetic activation of SON oxytocin neurons using channelrhodopsin is sufficient to enhance SRM performance, even under light conditions. Our findings unveil a dedicated neuronal circuit through which luminance affects SRM, utilizing a non-image-forming visual pathway, distinct from the canonical modulatory role of the oxytocin system.

4.
Front Neuroanat ; 14: 559402, 2020.
Article in English | MEDLINE | ID: mdl-33192340

ABSTRACT

Oxytocin, a neuropeptide and peptide hormone, is produced by neurons in the hypothalamus and released by the posterior pituitary to control breastfeeding and labor. Recent studies have revealed that oxytocin in the central nervous system is also involved in modulating social interaction. To understand the potential role and innervation pattern of oxytocin neurons before sexual interaction, here we used transgenic mice which have the Cre recombinase under the control of an endogenous oxytocin promoter and Cre-dependent human placental alkaline phosphatase (AP) reporter to label the oxytocin neurons in the naive mouse brain. Since AP is located on the membrane of oxytocin neurons, AP histochemistry staining enabled us to observe the fine axonal terminals and the innervation pattern of oxytocin neurons in the thick serial coronal brain slices. Here we show that the number of AP-labeled cells varies with staining reaction time and ranges from 30% of the oxytocin immune-positive cell count to slightly higher than the oxytocin immune-positive cell count. Using AP staining with extended reaction time, which may not label all oxytocin neurons, we confirmed many innervation targets of oxytocin neurons from the anterior olfactory nucleus, some cortex regions, the limbic system, the hypothalamus, and the hindbrain, while the cell bodies were exclusively located in the hypothalamus and the bed nucleus of the stria terminalis. Finally, we observe some individual variance at the olfactory area, isocortex, striatum, paraventricular nucleus of thalamus, locus coeruleus, and Barrington's nucleus.

SELECTION OF CITATIONS
SEARCH DETAIL
...