Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 288: 104982, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37532014

ABSTRACT

High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.


Subject(s)
Goats , Histidine , Animals , Female , Goats/microbiology , Goats/physiology , Hydroxylysine , Diet/veterinary , Metabolome
2.
J Thorac Dis ; 15(5): 2571-2584, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37324068

ABSTRACT

Background: Deep hypothermic circulatory arrest (DHCA) is a technique used during the surgical treatment of aneurysms of the thoracic aorta in adult patients, and complex congenital heart disease in neonates. And brain microvascular endothelial cells (BMECs) are essential components of the cerebrovascular network and participate in maintaining the blood-brain barrier (BBB) and brain function. In our previous study, we found that oxygen-glucose deprivation and reoxygenation (OGD/R) activated Toll-like receptor 4 (TLR4) signaling in BMECs, and induced pyroptosis and inflammation. In this study, we further investigated the potential mechanism of ethyl(6R)-6-[N-(2-Chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate (TAK-242) on BMECs under OGD/R, as in patients with sepsis, the TAK-242 was tested in clinical trials. Methods: To confirm the function of TAK-242 on BMECs under OGD/R, cell viability, inflammatory factors, inflammation-associated pyroptosis, and nuclear factor-κB (NF-κB) signaling were determined using Cell Counting Kit-8 (CCK-8) assay, enzyme-linked immunosorbent assay (ELISA), and western blotting, respectively. To investigate the lncRNAs associated with TLR4 during OGD/R, long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) expression patterns were profiled with RNA deep sequencing. Moreover, to confirm whether lncRNA-encoded short peptides, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. Results: Relative control group, OGD/R inhibited the cell viability, increased the section of inflammatory factors secretion, including IL-1ß, IL-6, and TNF-α, and promoted the pathways of TLR4/NLRP3/Caspase-1 and TLR4/NF-κB. However, TAK-242 + OGD/R group promoted OGD/R cell viability, decreased OGD/R-induced inflammatory factors secretion, and inhibited the pathways of TLR4/NLRP3/Caspase-1 and TLR4/NF-κB. In addition, AABR07000411.1, AABR070006957.1, and AABR070008256.1 were decreased in OGD/R cells compared with controls, but TAK-242 restored their expression under OGD/R condition. AABR07000473.1, AC130862.4, and LOC10254972.6 were induced by OGD/R, but were suppressed in TAK-242 + OGD/R cells compared with OGD/R. Moreover, AABR07049961.1, AC127076.2, AABR07066020.1, and AABR07025303.1-encoded short peptides were dysregulated in OGD/R cells, and TAK-242 attenuated the dysregulation of AABR07049961.1, AC127076.2, and AABR07066020.1-encoded short peptides. Conclusions: TAK-242 alters the expression pattern of lncRNAs in OGD/R cells, and differently expressed lncRNAs may exert a protective effect against OGD/R injury through a mechanism of competing endogenous RNA (ceRNA) and encoding short peptides. These findings maybe provide a new theory basis for the treatment of DHCA.

3.
Curr Neurovasc Res ; 18(1): 20-77, 2021.
Article in English | MEDLINE | ID: mdl-33745435

ABSTRACT

BACKGROUND: Previous studies have reported that mesenchymal stem cell (MSC)- derived exosomes can protect primary rat brain microvascular endothelial cells (BMECs) against oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury. OBJECTIVE: The aim was to identify the key factors mediating the protective effects of MSC-derived exosomes. METHODS: Primary rat BMECs were either pretreated or not pretreated with MSC-derived exosomes before exposure to OGD/R. Naïve cells were used as a control. After performing small RNA deep sequencing, quantitative reverse transcription polymerase chain reaction was performed to validate microRNA (miRNA) expression. The effects of rno-miR-666-3p on cell viability, apoptosis, and inflammation in OGD/R-exposed cells were assessed by performing the Cell Counting Kit 8 assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Moreover, the role of rno-miR-666-3p in regulating gene expression in OGD/R-exposed cells was studied using mRNA deep sequencing. Lastly, to evaluate whether mitogen-activated protein kinase 1 (MAPK1) was the target of rno-miR-666-3p, western blotting and the dual-luciferase assay were performed. RESULTS: MSC-derived exosomes altered the miRNA expression patterns in OGD/R-exposed BMECs. In particular, the expression levels of rno-miR-666-3p, rno-miR-92a-2-5p, and rnomiR- 219a-2-3p decreased in OGD/R-exposed cells compared with those in the control; however, MSC-derived exosomes restored the expression levels of these miRNAs under OGD/R conditions. rno-miR-666-3p overexpression enhanced cell viability and alleviated the apoptosis of OGD/R-exposed cells. Moreover, rno-miR-666-3p suppressed OGD/R-induced inflammation. mRNA deep sequencing revealed that rno-miR-666-3p is closely associated with the MAPK signaling pathway. Western blotting and the dual-luciferase assay confirmed that MAPK1 is the target of rnomiR- 666-3p. CONCLUSION: MSC-derived exosomes restore rno-miR-666-3p expression in OGD/R-exposed BMECs. Moreover, this specific miRNA exerts protective effects against OGD/R by suppressing the MAPK signaling pathway.


Subject(s)
Brain/metabolism , Cell Survival/physiology , Endothelial Cells/metabolism , Exosomes/metabolism , MAP Kinase Signaling System/physiology , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Cell Hypoxia/physiology , Glucose/metabolism , Oxygen/metabolism , Rats
4.
Curr Neurovasc Res ; 17(2): 155-163, 2020.
Article in English | MEDLINE | ID: mdl-32056526

ABSTRACT

OBJECTIVE: The effects of mesenchymal stem cell (MSC)-derived exosomes on brain microvascular endothelial cells under oxygen-glucose deprivation (OGD), which mimic cells in deep hypothermic circulatory arrest (DHCA) in vitro, are yet to be studied. METHODS: MSCs were co-cultured with primary rat brain endothelial cells, which were then exposed to OGD. Cell viability, apoptosis, the inflammatory factors (IL-1ß, IL-6, and TNF-α), and the activation of inflammation-associated TLR4-mediated pyroptosis and the NF-κB signaling pathway were determined. Furthermore, exosomes derived from MSCs were isolated and incubated with endothelial cells to investigate whether the effect of MSCs is associated with MSCderived exosomes. Apoptosis, cell viability, and the inflammatory response were also analyzed in OGD-induced endothelial cells incubated with MSC-derived exosomes. RESULTS: OGD treatment promoted endothelial cell apoptosis, induced the release of inflammatory factors IL-1ß, IL-6, and TNF-α, and inhibited cell viability. Western blot analysis showed that OGD treatment-induced TLR4, and NF-κB p65 subunit phosphorylation and caspase-1 upregulation, while co-culture with MSCs could reduce the effect of OGD treatment on endothelial cells. As expected, the effect of MSC-derived exosomes on OGD-treated endothelial cells was similar to that of MSCs. MSC-derived exosomes alleviated the OGD-induced decrease in the viability of endothelial cells, and increased levels of apoptosis, inflammatory factors, and the activation of inflammatory and inflammatory focal pathways. CONCLUSION: Both MSCs and MSC-derived exosomes attenuated OGD-induced rat primary brain endothelial cell injury. These findings suggest that MSC-derived exosomes mediate at least some of the protective effects of MSCs on endothelial cells.


Subject(s)
Brain/metabolism , Cell Hypoxia/physiology , Endothelial Cells/metabolism , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Apoptosis/physiology , Brain/cytology , Cell Survival/physiology , Coculture Techniques , Cytokines/metabolism , Endothelial Cells/cytology , Glucose/metabolism , Mesenchymal Stem Cells/cytology , NF-kappa B/metabolism , Oxygen/metabolism , Rats , Signal Transduction/physiology
5.
J Cell Biochem ; 120(4): 4872-4882, 2019 04.
Article in English | MEDLINE | ID: mdl-30614047

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+ , Gap26 peptide, 18ß-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801's apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.


Subject(s)
Apoptosis , Calcium Signaling , MAP Kinase Signaling System , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Humans , Myocardial Ischemia/pathology , Myocytes, Cardiac/pathology
6.
J Cardiovasc Pharmacol ; 70(5): 329-338, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28777252

ABSTRACT

BACKGROUND: Despite the adverse effects of N-methyl-D-aspartate receptor (NMDAR) activity in cardiomyocytes, no study has yet examined the effects of NMDAR activity under ex vivo ischemic-reperfusion (I/R) conditions. Therefore, our aim was to comprehensively evaluate the effects of NMDAR activity through an ex vivo myocardial I/R rat model. METHODS: Isolated rat hearts were randomly segregated into 6 groups (n = 20 in each group): (1) an untreated control group; (2) a NMDA-treated control group; (3) an untreated I/R group; (4) an I/R+NMDA group treated with NMDA; (5) an I/R+NMDA+MK-801 group treated with NMDA and the NMDAR inhibitor MK-801; and (6) an I/R+NMDA+[Ca]-free group treated with NMDA and [Ca]-free buffer. The 4 I/R groups underwent 30 minutes of ischemia followed by 50 minutes of reperfusion. Left ventricular pressure signals were analyzed to assess cardiac performance. Myocardial intracellular calcium levels ([Ca]i) were assessed in isolated ventricular cardiomyocytes. Creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T were assayed from coronary effluents. TTC and TUNEL staining were used to measure generalized myocardial necrosis and apoptosis levels, respectively. Western blotting was applied to assess the phosphorylation of PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase. RESULTS: Enhanced NMDAR activity under control conditions had no significant effects on the foregoing variables. In contrast, enhanced NMDAR activity under I/R conditions produced significant increases in [Ca]i levels (∼1.2% increase), significant losses in left ventricular function (∼5.4% decrease), significant multi-fold increases in creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T, significant increases in generalized myocardial necrosis (∼36% increase) and apoptosis (∼150% increase), and significant multi-fold increases in PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase phosphorylation (all P < 0.05). These adverse effects were rescued by the NMDAR inhibitor MK-801 or [Ca]-free buffer (all P < 0.05). CONCLUSIONS: NMDAR-driven calcium influx potentiates the adverse effects of myocardial I/R injury ex vivo.


Subject(s)
Calcium/metabolism , Myocardial Reperfusion Injury/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Male , Myocardial Reperfusion Injury/complications , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...