Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Food Chem ; 438: 137979, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37995586

ABSTRACT

The wild topmouth culter (Culter alburnus) from Xingkai Lake (XKL) is highly regarded for its delicious taste and unique flavor. In this study, based on muscle quality and aroma analysis, we first differentiated the XKL population from three wild populations in Heilongjiang Province and one artificially cultured population (from Xingkai Lake). Compared with the other populations, the XKL population has a significantly higher crude protein content, essential amino acid content, delicious amino acid content, and n-3/n-6 PUFA ratio. Additionally, it exhibits superior hardness, elasticity, chewiness, recoverability, and viscosity. E-nose detection analysis revealed that W1S, W2S, and W3S were the potential sensors contributing the most to the differences among the five populations. HS-SPME-GC-MS and multivariate regression analysis showed that 21 volatile flavor compounds were identified as key markers for geographical identification of the Xingkai Lake region. These findings will provide guidance for the geographical traceability and identification of the XKL population.


Subject(s)
Cyprinidae , Animals , Lakes , Odorants , Muscles
2.
Sensors (Basel) ; 18(11)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463243

ABSTRACT

Radio frequency interference (RFI) is known to jam synthetic aperture radar (SAR) measurements, severely degrading the SAR imaging quality. The suppression of RFI in SAR echo signals is usually an underdetermined blind source separation problem. In this paper, we propose a novel method for multiclass RFI detection and suppression based on the single shot multibox detector (SSD). First, an echo-interference dataset is established by randomly combining the target signal with various types of RFI in a simulation, and the time⁻frequency form of the dataset is obtained by utilizing the short-time Fourier transform (STFT). Next, the time⁻frequency dataset acts as input data to train the SSD and obtain a network that is capable of detecting, identifying and estimating the interference. Finally, all of the interference signals are exactly reconstructed based on the prediction results of the SSD and mitigated by an adaptive filter. The proposed method can effectively increase the signal-to-interference-noise ratio (SINR) of RFI-contaminated SAR echoes and improve the peak sidelobe ratio (PSLR) after pulse compression. The simulated experimental results validate the effectiveness of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...