Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(20): 29719-29729, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584232

ABSTRACT

The application of bentonite (Bt) as an adsorbent for heavy metals has been limited due to its hydrophobicity and insufficient surface area. Herein, we present cellulose nanocrystal (CNC) modified Bt composite (CNC@Bt) with enhanced efficiency for Cr(VI) removal. CNC@Bt exhibited an increased specific surface area and a porous structure, while maintaining the original crystal structure of Bt. This was achieved through a synergistic function of ion exchange, hydrogen bonding, electrostatic interactions, and steric hindrance. The adsorption of Cr(VI) by CNC@Bt followed the pseudo-second-order kinetic and Langmuir isotherm adsorption model. Moreover, the process was endothermic and spontaneous. At an initial Cr(VI) concentration of 20 mg/L and pH = 4.0, 10 g/L CNC@Bt achieved a removal rate of 92.7%, and the adsorption capacity was 1.85 mg/g, significantly higher than bare Bt (37.9% and 0.76 mg/g). The removal efficiency remained consistently above 80% over a wide pH range, indicating the potential practical applicability of CNC@Bt. With its fast adsorption rate, pH adaptability, and stable performance, CNC@Bt presents promising prospects for the rapid treatment of Cr-contaminated wastewater.


Subject(s)
Cellulose , Chromium , Nanoparticles , Water Pollutants, Chemical , Cellulose/chemistry , Nanoparticles/chemistry , Adsorption , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Clay/chemistry , Bentonite/chemistry , Hydrogen-Ion Concentration
2.
Food Res Int ; 180: 114089, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395585

ABSTRACT

Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.


Subject(s)
Gastrointestinal Microbiome , Selenium , Selenium/metabolism , Antioxidants/metabolism , Fermentation , Selenious Acid , Fatty Acids, Volatile , Digestion
3.
PLoS One ; 7(8): e42939, 2012.
Article in English | MEDLINE | ID: mdl-22912764

ABSTRACT

BACKGROUND: Slc39a7/Zip7, also known as Ke4, is a member of solute carrier family 39 (Slc39a) and plays a critical role in regulating cell growth and death. Because the function of Zip7 in vivo was unclear, the present study investigated the function of zip7 in vertebrate development and zinc metabolism using zebrafish as a model organism. PRINCIPAL FINDING: Using real-time PCR to determine the gene expression pattern of zip7 during zebrafish development, we found that zip7 mRNA is expressed throughout embryonic development and into maturity. Interestingly, whole mount in situ hybridization revealed that while zip7 mRNA is ubiquitously expressed until 12 hours post-fertilization (hpf); at 24 hpf and beyond, zip7 mRNA was specifically detected only in eyes. Morpholino-antisense (MO) gene knockdown assay revealed that downregulation of zip7 expression resulted in several morphological defects in zebrafish including decreased head size, smaller eyes, shorter palates, and shorter and curved spinal cords. Analysis by synchrotron radiation X-ray fluorescence (SR-XRF) showed reduced concentrations of zinc in brain, eyes, and gills of zip7-MO-injected embryos. Furthermore, incubation of the zip7 knockdown embryos in a zinc-supplemented solution was able to rescue the MO-induced morphological defects. SIGNIFICANCE: Our data suggest that zip7 is required for eye, brain, and skeleton formation during early embryonic development in zebrafish. Moreover, zinc supplementation can partially rescue defects resulting from zip7 gene knockdown. Taken together, our data provide critical insight into a novel function of zip7 in development and zinc homeostasis in vivo in zebrafish.


Subject(s)
Cation Transport Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Growth and Development/physiology , Homeostasis/physiology , Zebrafish Proteins/metabolism , Zebrafish/genetics , Zinc/metabolism , Animals , Cation Transport Proteins/genetics , Eye/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Knockdown Techniques , Growth and Development/genetics , Homeostasis/genetics , In Situ Hybridization , Real-Time Polymerase Chain Reaction , Spectrometry, X-Ray Emission , Zebrafish/physiology , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...