Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 45(4): e2300557, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37880914

ABSTRACT

Eutectogels are gaining attention in flexible device applications for their superior ionic conductivity, stability, biocompatibility, and cost-effectiveness. However, most existing eutectogels suffer from low strength and toughness. Herein, ultra-tough and highly stretchable polyacrylamide (PAM) eutectogels featuring a dual-crosslinked network comprising chemical cross-linking and physical cross-linking facilitated by metal coordination bonds and hydrogen bonds are developed. This is achieved through a controlled strategy involving polymerization of acrylamide in a coordinated metal salt-type deep eutectic solvent (DES) combined with a non-coordinated choline chloride (ChCl)-type DES mixture. By varying the molar ratio of these two types of DES, exceptional and adjustable mechanical properties of the resulting eutectogel are achieved, including a high tensile strength ranging from 2.9 to 8.2 MPa and elongation at break ranging from 1725 to 747%, at a 70 wt% DES content. Furthermore, the reversible non-covalent crosslinking in these eutectogels enables self-recovery and self-healing capabilities of eutectogels. The prepared eutectogels also exhibit outstanding ionic conductivity (3.56 mS cm-1 ), making them well-suited for use as strain sensors in human motion detection. The toughening strategy is universally effective for creating tough eutectogels using coordinated metal salt-type DES with various metal ions, as well as a diverse range of coordinatable polymers.


Subject(s)
Acrylamide , Deep Eutectic Solvents , Humans , Choline , Electric Conductivity , Hydrogen Bonding , Sodium Chloride
2.
ACS Appl Mater Interfaces ; 14(41): 47052-47065, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36194837

ABSTRACT

The host immune response to biomaterials is critical for determining scaffold fate and bone regeneration outcomes. Three-dimensional (3D) bioprinted scaffolds encapsulated with living cells can improve the inflammatory microenvironment and further accelerate bone repair. Here, we screened and adopted 8% methacrylamidated gelatin (GelMA)/1% methacrylamidated hyaluronic acid (HAMA) as the encapsulation system for rat bone marrow-derived macrophages (BMMs) and 3% Alginate/0.5 mg/mL graphene oxide (GO) as the encapsulation system for rat bone mesenchymal stem cells (BMSCs), thus forming a dual-channel bioprinting scaffold. The 8% GelMA/1% HAMA/3% Alginate/0.5 mg/mL GO (8/1/3/0.5) group could form a scaffold with a stable structure, good mechanical properties, and satisfied biocompatibility. When exploring the crosstalk between BMMs and BMSCs in vitro, we found that BMSCs could promote the polarization of BMMs to M2 type at the early stage, reduce the pro-inflammatory gene expression, and increase anti-inflammatory gene expression; conversely, BMMs can promote the osteogenic differentiation of BMSCs. In addition, in the model of rat calvarial defects, the dual-channel scaffold encapsulated with BMMs and BMSCs was more effective than the single-cell scaffold and the acellular scaffold. The paracrine of BMMs and BMSCs in the biodegradable dual-channel scaffold effectively promoted the M2-type polarization of macrophages in the microenvironment of early bone defects, avoided excessive inflammatory responses, and further promoted bone repair. In conclusion, our findings suggested that using 3D bioprinting to simultaneously encapsulate two primary cells of BMMs and BMSCs in a dual-channel system may be an effective way to promote bone repair from the perspective of early immune regulation and late induction of osteogenesis.


Subject(s)
Bioprinting , Mesenchymal Stem Cells , Rats , Animals , Osteogenesis , Gelatin/pharmacology , Gelatin/chemistry , Tissue Scaffolds/chemistry , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Bone Regeneration , Cell Differentiation , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , Macrophages/metabolism , Alginates/pharmacology
3.
BMC Genomics ; 23(1): 246, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35354401

ABSTRACT

BACKGROUND: Apple Glomerella leaf spot (GLS) and apple bitter rot (ABR) are two devastating foliar and fruit diseases on apples. The different symptoms of GLS and ABR could be related to different transcriptome patterns. Thus, the objectives of this study were to compare the transcriptome profiles of Colletotrichum gloeosporioides species complex isolates GC20190701, FL180903, and FL180906, the pathogen of GLS and ABR, and to evaluate the involvement of the genes on pathogenicity. RESULTS: A relatively large difference was discovered between the GLS-isolate GC20190701 and ABR-isolates FL180903, FL180906, and quite many differential expression genes associated with pathogenicity were revealed. The DEGs between the GLS- and ABR-isolate were significantly enriched in GO terms of secondary metabolites, however, the categories of degradation of various cell wall components did not. Many genes associated with secondary metabolism were revealed. A total of 17 Cytochrome P450s (CYP), 11 of which were up-regulated while six were down-regulated, and five up-regulated methyltransferase genes were discovered. The genes associated with the secretion of extracellular enzymes and melanin accumulation were up-regulated. Four genes associated with the degradation of the host cell wall, three genes involved in the degradation of cellulose, and one gene involved in the degradation of xylan were revealed and all up-regulated. In addition, genes involved in melanin syntheses, such as tyrosinase and glucosyltransferase, were highly up-regulated. CONCLUSIONS: The penetration ability, pathogenicity of GLS-isolate was greater than that of ABR-isolate, which might indicate that GLS-isolate originated from ABR-isolates by mutation. These results contributed to highlighting the importance to investigate such DEGs between GLS- and ABR-isolate in depth.


Subject(s)
Colletotrichum , Malus , Animals , Colletotrichum/genetics , Gene Expression Profiling , Malus/genetics , Phyllachorales/genetics , Transcriptome
4.
Front Bioeng Biotechnol ; 8: 631616, 2020.
Article in English | MEDLINE | ID: mdl-33511108

ABSTRACT

In recent years, polyetheretherketone (PEEK) has been increasingly employed as an implant material in clinical applications. Although PEEK is biocompatible, chemically stable, and radiolucent and has an elastic modulus similar to that of natural bone, it suffers from poor integration with surrounding bone tissue after implantation. To improve the bioactivity of PEEK, numerous strategies for functionalizing the PEEK surface and changing the PEEK structure have been proposed. Inspired by the components, structure, and function of bone tissue, this review discusses strategies to enhance the biocompatibility of PEEK implants and provides direction for fabricating multifunctional implants in the future.

5.
Medicine (Baltimore) ; 97(50): e13175, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30557967

ABSTRACT

RATIONALE: In this report, a combination of socket-shield technique (SST) and platelet-rich fibrin (PRF) technique was used for immediate implant placement on a fractured central incisor. During the follow-up visit, cone beam computed tomography (CBCT) and clinical observation were used to evaluate the preservation outcome of peri-implant bone and gingiva. PATIENT CONCERNS: The patient was a 28-year-old healthy female patient who desired her fractured 21 to be replaced with an implant-supported single crown; the fractured 21 comprised a post-core crown with insufficient residual bone at the labial site. DIAGNOSIS: The root of 21 exhibited a complex root fracture; the labial portion of the alveolar ridge was thin (<1 mm) and partial ankylosis of the residual root was observed. INTERVENTIONS: Modified SST was applied to the labial portion of the residual root. The implant was placed immediately at the lingual site of the retained socket-shield root fragment; PRF was the placed in the gap between the root fragment and the implant. Final prosthodontic treatment was performed at 24 weeks after implant placement. OUTCOMES: Clinical examination and CBCT scanning at various follow-up visits time showed that the periodontal tissue was well- preserved. At 6 months after surgery, the average horizontal and vertical peri-implant bone resorption was 0.4 mm; a follow-up visit at 18 months post-loading indicated that peri-implant tissue was well preserved by the shield-technique and no significant peri-implant tissue resorption was displayed. LESSON SUBSECTIONS: In cases of anterior teeth with intact but insufficient residual alveolar ridge, the SST with PRF may be effective for preservation and maintenance of stable peri-implant tissue.


Subject(s)
Incisor/drug effects , Incisor/surgery , Platelet-Rich Fibrin/drug effects , Adult , Crowns , Female , Fractures, Bone/diagnostic imaging , Fractures, Bone/drug therapy , Fractures, Bone/surgery , Humans , Tissue Preservation/instrumentation , Tissue Preservation/methods , Tooth Root/diagnostic imaging , Tooth Root/drug effects , Tooth Root/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...