Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(2): 478-484, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35200886

ABSTRACT

Quantitative chemometric widefield endogenous fluorescence microscopy (CFM) maps the endogenous absolute chromophore concentration and spatial distribution in cells and tissue sections label-free from fluorescence color images under broadband excitation and detection. By quantifying the endogenous chromophores, including tryptophan, elastin, reduced nicotinamide adenine dinucleotide [NAD(P)H], and flavin adenine dinucleotide (FAD), CFM reveals the biochemical environment and subcellular structure. Here we show that the chromophore information entropy, marking its spatial distribution pattern of quantitative chemometric endogenous fluorescence at the microscopic scale, improves photonic lung cancer diagnosis with independent diagnostic power to the cellular metabolism biomarker. NAD(P)H and FAD's information entropy is found to decrease from normal to perilesional to cancerous tissue, whereas the information entropy for the redox ratios [FAD/tryptophan and FAD/NAD(P)H] is smaller for the normal tissue than both perilesional and cancerous tissue. CFM imaging of the specimen's inherent biochemical and structural properties eliminates the dependence on measurement details and facilitates robust, accurate diagnosis. The synergy of quantifying absolute chromophore concentration and information entropy achieves high accuracies for a three-class classification of lung tissue into normal, perilesional, and cancerous ones and a three-class classification of lung cancers into grade 1, grade 2, and grade 3 using a support vector machine, outperforming the chromophore concentration biomarkers.


Subject(s)
Flavin-Adenine Dinucleotide , Lung Neoplasms , Chemometrics , Entropy , Flavin-Adenine Dinucleotide/metabolism , Fluorescence , Humans , Lung/metabolism , Lung Neoplasms/diagnosis , NAD/metabolism
2.
Biomed Opt Express ; 12(8): 5057-5072, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34513242

ABSTRACT

A labial salivary gland biopsy (LSGB) plays an essential role in diagnosing Sjögren's syndrome (SS), but its clinical application is limited due to its invasiveness. Here, we present a handheld single snapshot multiple-frequency demodulation-spatial frequency domain imaging (SSMD-SFDI) device for a rapid optical biopsy of labial salivary glands noninvasively. The structural and physiological parameters of lower lip mucosa were obtained from the light reflectance of the layered oral mucosa. The recovered parameters were found to correlate strongly with the progression of SS. In our pilot study on 15 healthy subjects and 183 SS patients, a support vector machine (SVM) classifier using the measured parameters distinguished healthy subjects, LSGB I, II, III, and IV patients in sequence with AUCs of 0.979, 0.898, 0.906, and 0.978, respectively. Critical structural and physiological alterations in the mucosa due to SS were further identified and used to assess its risk using an explainable neural network. The handheld spatial frequency domain imager may serve as a valuable label-free and noninvasive tool for early diagnosing and surveying SS.

3.
Biomed Opt Express ; 11(8): 4471-4483, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32923057

ABSTRACT

Diabetic foot is one of the major complications of diabetes. In this work, a real-time Single Snapshot Multiple-frequency Demodulation (SSMD) - Spatial Frequency Domain Imaging (SFDI) system was used to image the forefoot of healthy volunteers, diabetes, and diabetic foot patients. A layered skin model was used to obtain the 2D maps of optical and physiological parameters, including cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness, from every single snapshot. We observed a strong correlation between the measured optical and physiological parameters and the degree of diabetes. The cutaneous hemoglobin concentration, oxygen saturation, and epidermal thickness decrease, whereas the melanin content increases with the progress of diabetes. The melanin content further increases, and the reduced scattering coefficient and scattering power are lower for diabetic foot patients than those of both healthy and diabetic subjects. High accuracies (AUC) of 97.2% (distinguishing the diabetic foot patients among all subjects), 95.2% (separating healthy subjects from the diabetes patients), and 87.8% (classifying mild vs severe diabetes), respectively, are achieved in binary classifications in sequence using the SSMD-SFDI system, demonstrating its applicability to risk stratification of diabetes and diabetic foot. The prognostic value of the SSMD-SFDI system in the prediction of the occurrence of the diabetic foot and other applications in monitoring tissue microcirculation and peripheral vascular disease are also addressed.

4.
Biomed Opt Express ; 10(5): 2446-2456, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31149379

ABSTRACT

We present a study on lung squamous cell carcinoma diagnosis using quantitative TI-DIC microscopy and a deep convolutional neural network (DCNN). The 2-D phase map of unstained tissue sections is first retrieved from through-focus differential interference contrast (DIC) images based on the transport of intensity equation (TIE). The spatially resolved optical properties are then computed from the 2-D phase map via the scattering-phase theorem. The scattering coefficient ( µ S ) and the reduced scattering coefficient ( µ S ' ) are found to increase whereas the anisotropy factor (g) is found to decrease with cancer. A DCNN classifier is developed afterwards to classify the tissue using either the DIC images or 2-D optical property maps of µ S , µ S ' and g. The DCNN classifier with the optical property maps exhibits high accuracy, significantly outperforming the same DCNN classifier on the DIC images. The label-free quantitative phase microscopy together with deep learning may emerge as a promising approach for in situ rapid cancer diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...