Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.353
Filter
1.
J Inorg Biochem ; 258: 112621, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38852295

ABSTRACT

CH functionalization, a promising frontier in modern organic chemistry, facilitates the direct conversion of inert CH bonds into many valuable functional groups. Despite its merits, traditional homogeneous catalysis, often faces challenges in efficiency, selectivity, and sustainability towards this transformation. In this context, artificial metalloenzymes (ArMs), resulting from the incorporation of a catalytically-competent metal cofactor within an evolvable protein scaffold, bridges the gap between the efficiency of enzymatic transformations and the versatility of transition metal catalysis. Accordingly, ArMs have emerged as attractive tools for various challenging catalytic transformations. Additionally, the coming of age of directed evolution has unlocked unprecedented avenues for optimizing enzymatic catalysis. Taking advantage of their genetically-encoded protein scaffold, ArMs have been evolved to catalyze various CH functionalization reactions. This review delves into the recent developments of ArM-catalyzed CH functionalization reactions, highlighting the benefits of engineering the second coordination sphere around a metal cofactor within a host protein.

2.
Opt Express ; 32(9): 15065-15077, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859166

ABSTRACT

Optical resonators made of 2D photonic crystal (PhC) slabs provide efficient ways to manipulate light at the nanoscale through small group-velocity modes with low radiation losses. The resonant modes in periodic photonic lattices are predominantly limited by nonleaky guided modes at the boundary of the Brillouin zone below the light cone. Here, we propose a mechanism for ultra-high Q resonators based on the bound states in the continuum (BICs) above the light cone that have zero-group velocity (ZGV) at an arbitrary Bloch wavevector. By means of the mode expansion method, the construction and evolution of avoided crossings and Friedrich-Wintgen BICs are theoretically investigated at the same time. By tuning geometric parameters of the PhC slab, the coalescence of eigenfrequencies for a pair of BIC and ZGV modes is achieved, indicating that the waveguide modes are confined longitudinally by small group-velocity propagation and transversely by BICs. Using this mechanism, we engineer ultra-high Q nanoscale resonators that can significantly suppress the radiative losses, despite the operating frequencies above the light cone and the momenta at the generic k point. Our work suggests that the designed devices possess potential applications in low-threshold lasers and enhanced nonlinear effects.

3.
Angew Chem Int Ed Engl ; : e202407752, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844430

ABSTRACT

Inherently chiral calix[4]arenes are an excellent structural scaffold for asymmetric synthesis, chiral recognition, sensing, and circularly polarized luminescence. However, their catalytic asymmetric synthesis remains challenging. Herein, we report an efficient synthesis of inherently chiral calix[4]arene derivatives via cascade asymmetric cyclization and oxidation reactions. The three-component reaction features a broad substrate scope (33 examples), high efficiency (up to 90% yield), and excellent enantioselectivity (>95% ee on average). The potential applications of calix[4]arene derivatives are highlighted by their synthetic transformation and a detailed investigation of their photophysical and chiroptical properties.

5.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701421

ABSTRACT

Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.


Subject(s)
Single-Cell Analysis , Software , Tumor Microenvironment , Single-Cell Analysis/methods , Humans , Neoplasms/pathology , Machine Learning , Computational Biology/methods
6.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
8.
Science ; 384(6695): 546-551, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696550

ABSTRACT

Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub-50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed.

9.
Phys Rev Lett ; 132(16): 160801, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701444

ABSTRACT

A solid-state approach for quantum networks is advantageous, as it allows the integration of nanophotonics to enhance the photon emission and the utilization of weakly coupled nuclear spins for long-lived storage. Silicon carbide, specifically point defects within it, shows great promise in this regard due to the easy of availability and well-established nanofabrication techniques. Despite of remarkable progresses made, achieving spin-photon entanglement remains a crucial aspect to be realized. In this Letter, we experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line. The spin state is measured by detecting photons scattered in the phonon sideband. The photonic qubit is encoded in the time-bin degree of freedom and measured using an unbalanced Mach-Zehnder interferometer. Photonic correlations not only reveal the quality of the entanglement but also verify the deterministic nature of the entanglement creation process. By harnessing two pairs of such spin-photon entanglement, it becomes straightforward to entangle remote quantum nodes at long distance.

11.
Medicine (Baltimore) ; 103(19): e38169, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728450

ABSTRACT

We investigated the correlation of orthostatic hypotension (OH) in Parkinson disease (PD) with the disease course and severity, and its possible impact on quality of life. 171 PD patients were recruited and divided into the PD-NOH (n = 91) and PD-OH groups (n = 80). Clinical data were collected. The severity and quality of life of PD patients were evaluated. The impact of disease severity was analyzed using logistic regression analysis. The ROC curve was plotted. There were significant differences (P < .05) between PD-NOH and PD-OH groups in terms of the disease course, non-motor symptoms (somnipathy), Hoehn&Yahr stage, LEDD score, RBDSQ score, PDQ-39 score, MMSE score, MoCA, MDS-UPDRS Part III scores during off- and on-periods, and NMSS score. Hoehn&Yahr stage (OR 4.950, 95% CI 1.516-16.157, P = .008) was closely associated with the risk of OH in PD. PDQ-39 score (OR 1.079, 95% CI 1.033-1.127, P = .001) in PD patients with OH further decreased. Patients with PD-OH experienced severe impairment in 4 dimensions of quality of life, including motor function, cognitive function, physical discomfort, and activities of daily living. Different clinical symptoms of PD-OH were positively correlated with PDQ39 subscales. The area under the ROC curve of the Hoehn&Yahr stage in predicting the occurrence of OH was 0.679 (95% CI 0.600-0.758), and that of the Hoehn&Yahr stage combined with levodopa equivalent dose, and MDS-UPDRS Part III score during off-period was 0.793 (95% CI 0.727-0.862). Higher Hoehn&Yahr stage is associated with increased risk of OH in PD patients, and deteriorated quality of life of PD patients. Patients with different OH symptoms are affected in different dimensions of their quality of life. The Hoehn & Yahr stage can independently predict the risk of OH in PD patients.


Subject(s)
Hypotension, Orthostatic , Parkinson Disease , Quality of Life , Severity of Illness Index , Humans , Parkinson Disease/complications , Parkinson Disease/psychology , Parkinson Disease/physiopathology , Hypotension, Orthostatic/etiology , Hypotension, Orthostatic/epidemiology , Male , Female , Aged , Middle Aged , Disease Progression
12.
Talanta ; 276: 126253, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759359

ABSTRACT

A novel zeolitic imidazolate framework-encapsulated zinc porphyrin (ZnTCPP@ZIF-90) photoresponsive nanozyme is proposed for the colorimetric/fluorescent dual-mode visual sensing of glyphosate (Gly). ZnTCPP@ZIF-90 exhibits photoresponsive oxidase-like activity and fluorescence quenching behavior. Meanwhile, the outer ZIF-90 layer can be selectively destroyed by Gly, causing the release of free ZnTCPP, resulting in the enhanced enzyme-like activity as well as fluorescence emission. The constructed ZnTCPP@ZIF-90 was successfully used for the colorimetric/fluorescent dual-mode detection of Gly. Additionally, the colorimetric and fluorescent images information captured by the smartphone were converted to color intensity (HSV/RGB values), with limits of detection of 0.27 µg/mL and 0.19 µg/mL, respectively. The proposed dual-mode sensor exhibits excellent selectivity and reliability for detecting Gly, and can be successfully applied to the analysis of real samples such as tap water, lake water, and fruit washing water. The current research efforts are expected to provide new perspectives for designing highly active photoresponsive nanozymes and their stimuli-responsive sensing systems, paving the way for their applications in portable dual-mode chemical sensing and environmental monitoring.


Subject(s)
Colorimetry , Glycine , Glyphosate , Imidazoles , Metal-Organic Frameworks , Metalloporphyrins , Zeolites , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Zeolites/chemistry , Imidazoles/chemistry , Metalloporphyrins/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Spectrometry, Fluorescence/methods , Photochemical Processes , Limit of Detection , Herbicides/analysis , Fluorescence , Smartphone
13.
J Food Sci ; 89(6): 3318-3329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767852

ABSTRACT

Incorporating green tea powder (GTP) into wheat flour-based noodles can significantly improve nutritional value. So, this study investigated the effects of GTP (0%, 0.5%, 1%, 1.5%, and 2.0%) on the quality properties of dried green tea noodles (DGTN) and cooking-induced changes to phenolic compounds. Mixolab analysis of wheat flour with GTP showed more water absorption of dough, and the developed dough had a firmer structure. GTP markedly increased the toughness of the noodle sheet. DGTN fortified with GTP showed more stable textural properties during cooking and storage, representing higher hardness and tensile strength. The viscosity and thermal properties of DGTN showed that GTP affected the gelatinization and retrogradation behavior of starch, which were closely related to the textural properties. Overall, DGTN prepared with 1.5% GTP showed better quality properties. However, ultra-performance liquid chromatography-time (UPLC/Q-TOF-mass spectrometry [MS]/MS) analysis showed that cooking by boiling significantly decreased phenolic content in 1.5% DGTN; further analysis revealed that the thermal degradation is a key factor in the loss of polyphenols. Therefore, further studies are necessary to focus on the mechanism of cooking-induced polyphenol loss, which is of great significance for improving the nutritional value of cooked DGTN.


Subject(s)
Cooking , Flour , Phenols , Tea , Cooking/methods , Flour/analysis , Phenols/analysis , Tea/chemistry , Nutritive Value , Viscosity , Triticum/chemistry , Polyphenols/analysis , Hot Temperature , Camellia sinensis/chemistry , Tensile Strength , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods
14.
Front Immunol ; 15: 1407649, 2024.
Article in English | MEDLINE | ID: mdl-38812510

ABSTRACT

Infection with human papillomavirus (HPV) typically leads to cervical cancer, skin related cancers and many other tumors. HPV is mainly responsible for evading immune tumor monitoring in HPV related cancers. Toll like receptors (TLRs) are particular pattern recognition molecules. When the body is facing immune danger, it can lead to innate and direct adaptive immunity. TLR plays an important role in initiating antiviral immune responses. HPV can affect the expression level of TLR and interfere with TLR related signaling pathways, resulting in sustained viral infection and even carcinogenesis. This paper introduces the HPV virus and HPV related cancers. We discussed the present comprehension of TLR, its expression and signaling, as well as its role in HPV infection. We also provided a detailed introduction to immunotherapy methods for HPV related diseases based on TLR agonists. This will provide insights into methods that support the therapeutic method of HPV related conditions with TLR agonists.


Subject(s)
Papillomaviridae , Papillomavirus Infections , Toll-Like Receptors , Humans , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/therapy , Papillomavirus Infections/virology , Papillomaviridae/physiology , Papillomaviridae/immunology , Signal Transduction , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/immunology , Host-Pathogen Interactions/immunology
15.
Waste Manag ; 182: 259-270, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677143

ABSTRACT

Phosphogypsum (PG) presents considerable potential for agricultural applications as a secondary primary resource. However, it currently lacks environmentally friendly, economically viable, efficient, and sustainable reuse protocols. This study firstly developed a PG-based mineral slow-release fertilizer (MSRFs) by internalization and fixation of urea within the PG lattice via facet-engineering strategy. The molecular dynamics simulations demonstrated that the binding energy of urea to the (041) facet of PG surpassed that of the (021) and (020) facets, with urea's desorption energy on the (041) facet notably higher than on the (021) and (020) facets. Guided by these calculations, we selectively exposed the (041) dominant facet of PG, and then achieving complete urea fixation within the PG lattice to form urea-PG (UPG). UPG exhibited a remarkable 48-fold extension in N release longevity in solution and a 45.77% increase in N use efficiency by plants compared to conventional urea. The facet-engineering of PG enhances the internalization and fixation efficiency of urea for slow N delivery, thereby promoting nutrient uptake for plant growth. Furthermore, we elucidated the intricate interplay between urea and PG at the molecular level, revealing the involvement of hydrogen and ionic bonding. This specific bonding structure imparts exceptional thermal stability and water resistance to the urea within UPG under environmental conditions. This study has the potential to provide insights into the high-value utilization of PG and present innovative ideas for designing efficient MSRFs.


Subject(s)
Calcium Sulfate , Fertilizers , Phosphorus , Calcium Sulfate/chemistry , Phosphorus/chemistry , Urea/chemistry , Minerals/chemistry , Nitrogen/chemistry , Molecular Dynamics Simulation , Agriculture/methods , Nutrients
16.
Angew Chem Int Ed Engl ; : e202400441, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587149

ABSTRACT

Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.

17.
Opt Lett ; 49(7): 1812-1815, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560871

ABSTRACT

To concurrently determine the thermophysical parameters of semi-transparent materials, a novel, to the best of our knowledge, integrated approach for concurrent measurement is proposed. In the measurement setup, a high-temperature radiation source and a beam reducer are employed to minimize the influence of background radiation. In order to differentiate between the transmitted and emitted radiation in the detection signal, the radiation signals from the radiation source are measured under four different conditions, enabling the calculation of transmissivity, emissivity, and reflectivity. The reliability and accuracy of the measurement method are validated by the thermophysical parameters of sapphire, and the results demonstrate a strong agreement between the measured data and previous findings. The combined uncertainties of transmissivity and emissivity for the sapphire at 753 K are estimated, highlighting the novel contribution of this method in investigating the thermophysical parameters of semi-transparent materials.

18.
Article in English | MEDLINE | ID: mdl-38564349

ABSTRACT

Texture synthesis is a fundamental problem in computer graphics that would benefit various applications. Existing methods are effective in handling 2D image textures. In contrast, many real-world textures contain meso-structure in the 3D geometry space, such as grass, leaves, and fabrics, which cannot be effectively modeled using only 2D image textures. We propose a novel texture synthesis method with Neural Radiance Fields (NeRF) to capture and synthesize textures from given multi-view images. In the proposed NeRF texture representation, a scene with fine geometric details is disentangled into the meso-structure textures and the underlying base shape. This allows textures with meso-structure to be effectively learned as latent features situated on the base shape, which are fed into a NeRF decoder trained simultaneously to represent the rich view-dependent appearance. Using this implicit representation, we can synthesize NeRF-based textures through patch matching of latent features. However, inconsistencies between the metrics of the reconstructed content space and the latent feature space may compromise the synthesis quality. To enhance matching performance, we further regularize the distribution of latent features by incorporating a clustering constraint. In addition to generating NeRF textures over a planar domain, our method can also synthesize NeRF textures over curved surfaces, which are practically useful. Experimental results and evaluations demonstrate the effectiveness of our approach.

19.
Phys Rev E ; 109(3-2): 035303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632759

ABSTRACT

Real-world water wave fields exhibit significant nonlinear and nonisospectral characteristics, making it challenging to predict their evolution by relying solely on numerical simulation or exact solutions using integrable system theory. Hence, this paper introduces a fast and adaptive method of modal identification and prediction in nonisospectral water wave fields using the reduced-order nonlinear solution (RONS) scheme. Specifically, we discuss the coarse graining and mode extraction of wave field snapshots from the data-driven and physics-driven perspectives and utilize the RONS method for principle modal prediction of nonisospectral water wave fields. This is achieved by investigating the standard and nonisospectral Gardner system describing nonlinear water waves as a demonstration. Through detailed comparison and analysis, the fundamental solitary behaviors and dispersive effects in the Gardner system are discussed. Subsequently, a neighbor approximation is developed that combines the essences of symbolic precomputation and numerical computation in the RONS procedure, which exploits the locality of nonlinear interactions in water wave fields.

20.
Chemosphere ; 355: 141834, 2024 May.
Article in English | MEDLINE | ID: mdl-38565376

ABSTRACT

Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.


Subject(s)
Ultrafiltration , Water Purification , Natural Gas , Hydrogen Peroxide , Membranes, Artificial , Water Purification/methods , Electrocoagulation
SELECTION OF CITATIONS
SEARCH DETAIL
...