Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(18): 11778-11803, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652869

ABSTRACT

Severe acute pancreatitis (AP) is a life-threatening pancreatic inflammatory disease with a high mortality rate (∼40%). Existing pharmaceutical therapies in development or in clinical trials showed insufficient treatment efficacy due to their single molecular therapeutic target, poor water solubility, short half-life, limited pancreas-targeting specificity, etc. Herein, acid-responsive hollow mesoporous Prussian blue nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety were developed for codelivering membrane-permeable calcium chelator BAPTA-AM (BA) and trypsin activity inhibitor gabexate mesylate (Ga). In the AP mouse model, the formulation exhibited efficient recruitment at the inflammatory endothelium, trans-endothelial migration, and precise acinar cell targeting, resulting in rapid pancreatic localization and higher accumulation. A single low dose of the formulation (BA: 200 µg kg-1, Ga: 0.75 mg kg-1) significantly reduced pancreas function indicators to close to normal levels at 24 h, effectively restored the cell redox status, reduced apoptotic cell proportion, and blocked the systemic inflammatory amplified cascade, resulting in a dramatic increase in the survival rate from 58.3 to even 100%. Mechanistically, the formulation inhibited endoplasmic reticulum stress (IRE1/XBP1 and ATF4/CHOP axis) and restored impaired autophagy (Beclin-1/p62/LC3 axis), thereby preserving dying acinar cells and restoring the cellular "health status". This formulation provides an upstream therapeutic strategy with clinical translation prospects for AP management through synergistic ion homeostasis regulation and pancreatic autodigestion inhibition.


Subject(s)
Acinar Cells , Calcium , Homeostasis , Nanomedicine , Pancreatitis , Animals , Pancreatitis/drug therapy , Pancreatitis/pathology , Pancreatitis/metabolism , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Mice , Homeostasis/drug effects , Calcium/metabolism , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Nanoparticles/chemistry , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Mice, Inbred C57BL , Male , Humans
2.
Small ; 20(20): e2308585, 2024 May.
Article in English | MEDLINE | ID: mdl-38212280

ABSTRACT

This study addresses the challenge of designing simple and environmentally friendly methods for the preparation of effective electromagnetic wave (EMW) absorbing materials with tailored microstructures and multi-component regulation. N, O doped walnut-like porous carbon composite microspheres loaded with FeCo nanoparticles (WPCM/Fe-Co) are synthesized through high-temperature carbonization combined with soap-free emulsion polymerization and hydrothermal methods, avoiding the use of toxic solvents and complex conditions. The incorporation of magnetic components enhances magnetic loss, complementing dielectric loss to optimize EMW attenuation. The unique walnut-like morphology further improves impedance matching. The proportions of Fe and Co components can be adjusted to regulate the material's reflection loss, thickness, and bandwidth, allowing for fine-tuning of absorption performance. At a low filling ratio (16.7%), the optimal WPCM/Fe-Co composites exhibit a minimum reflection loss (RLmin) of -48.34 dB (10.33 GHz, 3.0 mm) and an overall effective absorbing bandwidth (EAB) covering the entire C bands, X bands, and Ku bands. This work introduces a novel approach to composition regulation and presents a green synthesis method for magnetic carbon composite absorbers with high-performance EMW absorption at low loading.

3.
ACS Appl Mater Interfaces ; 15(48): 55938-55947, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37988589

ABSTRACT

Photoelectric devices are extensively applied in optical logic systems, light communication, optical imaging, and so on. However, traditional photoelectric devices can only generate unidirectional photocurrent, which hinders the simplification and multifunctionality of devices. Recently, it has become a new research focus to achieve controllable reversal of the output photocurrent direction (bipolar current) in a photoelectric system. Considering that the device with bipolar current adds a reverse current operating state compared to traditional devices, the former is more suitable for developing new multifunctional photoelectric devices. Due to the existence of electrolytes, photoelectrochemical (PEC) systems contain chemical processes such as ion diffusion and migration and electrochemical reactions, which are unable to occur in solid-state transistor devices, and the effect of electrolyte pH on the performance of PEC systems is usually ignored. We prepared a MnPS3-based PEC-type photodetector and reversed photocurrents by adjusting the pH of electrolytes, i.e., the electrolyte-controlled photoelectrochemical photocurrent switching (PEPS) effect. We clarified the effect of pH values on the direction of photocurrent from the perspectives of electrolyte energy level rearrangement splitting and the kinetic theory of the semiconductor electrode. This work not only contributes to a deeper understanding of carrier transport in PEC processes but also inspires the development of advanced multifunctional photoelectric devices.

4.
J Nanobiotechnology ; 21(1): 408, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37926815

ABSTRACT

Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.


Subject(s)
Biocompatible Materials , Polysaccharides , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Polysaccharides/chemistry , Tissue Engineering , Drug Delivery Systems
5.
J Agric Food Chem ; 71(41): 15352-15362, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37802117

ABSTRACT

Polyphenols and amides isolated from natural products have various biological functions, such as antioxidant, antimicrobial, anticancer, and antiviral activities, and they are widely used in the fields of food and medicine. In this work, four novel and environmentally friendly amide-modified gallic acid derivatives (AMGADs), which were prepared by using different amides to modify gallic acid (GA) from Polygonaceae plants, displayed good antiultraviolet (anti-UV), antioxidant, antimicrobial, and anticancer effects. Significantly, the anti-UV capability of compounds n1 and n2 was notably superior to that of the UV absorber GA. Moreover, compound n2 possessed better 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging ability and ferric reducing antioxidant power than vitamin C. The antibacterial activities of all AMGADs, with inhibition rates of more than 96.00 and 79.00% for Escherichia coli and Staphylococcus aureus, respectively, were better than those of GA. Compound n1 had broad-spectrum anticancer activity, and its inhibitory effect on HepG2 cells exceeded that of 5-fluorouracil. The good and rich bioactivities of these AMGADs revealed that combining GA with amides is conducive to improving the activity of GA, and this study laid a good foundation for their scientific application in the fields of food and medicine.


Subject(s)
Anti-Infective Agents , Antioxidants , Antioxidants/pharmacology , Gallic Acid/pharmacology , Amides , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology
6.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37851535

ABSTRACT

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Subject(s)
Bone Neoplasms , Nanopores , Osteosarcoma , Humans , Nanomedicine , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Phototherapy , Cell Line, Tumor
7.
Int J Biol Macromol ; 253(Pt 4): 126985, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37730008

ABSTRACT

The rapid development of the printing and dyeing industry has led to the production of a large amount of high-density printing and dyeing wastewater, and technology for its effective treatment has become a focus of research. To construct a polymeric adsorbent material with abundant functional groups for the efficient adsorption of dye wastewater, a novel magnetic sodium alginate/carboxymethylcellulose interpenetrating network gel sphere (Fe3O4@SA/CMC-Fe) was prepared by co-blending sodium alginate (SA) and sodium carboxymethylcellulose (CMC) with Fe3O4; Fe3O4@SA/CMC-Fe was characterized by SEM-EDS, XRD, TGA, FT-IR, UV-Vis, VSM, BET-BJH and XPS. Static adsorption experiments showed that the optimal rates for adsorption of DV 51 and DR 23 from solutions with neutral pH values by Fe3O4@SA/CMC-Fe were up to 96 %, the adsorption process exhibited a Langmuir adsorption isotherm, and the dynamic adsorption process was accurately described by the pseudo-second-order kinetic model. A thermodynamic study showed that the adsorption reactions were all spontaneous exothermic reactions with increasing entropy. The mechanism for adsorption of the dyes by Fe3O4@SA/CMC-Fe involved hydrogen bonding, complexation and electrostatic adsorption. In summary, Fe3O4@SA/CMC-Fe is a green, simple, recyclable and highly efficient magnetic adsorbent that is expected to be widely used in treating dye wastewaters over a wide pH range.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Adsorption , Carboxymethylcellulose Sodium/chemistry , Alginates/chemistry , Water/chemistry , Wastewater , Spectroscopy, Fourier Transform Infrared , Magnetic Phenomena , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
8.
Small ; 19(39): e2301917, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37264720

ABSTRACT

Two-Dimensional (2D) materials have attracted immense attention in recent years. These materials have found their applications in various fields, such as catalysis, adsorption, energy storage, and sensing, as they exhibit excellent physical, chemical, electronic, photonic, and biological properties. Recently, researchers have focused on constructing porous structures on 2D materials. Various strategies, such as chemical etching and template-based methods, for the development of surface pores are reported, and the porous 2D materials fabricated over the years are used to develop supercapacitors and energy storage devices. Moreover, the lattice structure of the 2D materials can be modulated during the construction of porous structures to develop 2D materials that can be used in various fields such as lattice defects in 2D nanomaterials for enhancing biomedical performances. This review focuses on the recently developed chemical etching, solvent thermal synthesis, microwave combustion, and template methods that are used to fabricate porous 2D materials. The application prospects of the porous 2D materials are summarized. Finally, the key scientific challenges associated with developing porous 2D materials are presented to provide a platform for developing porous 2D materials.

9.
J Colloid Interface Sci ; 646: 54-66, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37182259

ABSTRACT

Nowadays, multifunction is regarded as an advanced development direction of new-generation electromagnetic wave absorption (EMWA) materials to fulfill the ever-growing demands in complex environment and situation. Environmental pollution and electromagnetic pollution are all difficult problems for human beings all the time. Now, there is no multifunctional materials for collaborative treatment of environmental and electromagnetic pollution. Herein, We synthesized nanospheres with divinyl benzene (DVB) and N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA), using a simple one-pot method. After calcination at 800 ℃ in N2, porous N, O-doped porous carbon materials were prepared. By regulating the mole ratio of DVB and DMAPMA, the ratio was 5:1 reached excellent EMWA property. Remarkably, the introduction of iron acetylacetonate into the reaction of DVB and DMAPMA was effective in enhancing the absorption bandwidth to 8.00 GHz at a 3.74 mm thickness, which depended on the synergistic effects from dielectric and magnetic losses. Simultaneously, the Fe-doped carbon materials had a methyl orange adsorption capacity. The adsorption isotherm conformed to the Freundlich model. After methyl orange absorption, the EMWA property did not greatly change. Thus, this research paves the way for the creation of multifunctional materials to solve environmental pollution and electromagnetic pollution together.

10.
J Mater Chem B ; 11(17): 3929-3940, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37066616

ABSTRACT

The drug resistance of bacteria seriously reduces the recovery rate of general disease and endangers human health. Consequently, it is urgent to investigate a non-antibiotic antibacterial material. Recently, two-dimensional MXene has shown good antibacterial properties and received extensive attention due to the large number of active sites, extremely high thermal conversion efficiency, excellent cytocompatibility and ability to penetrate pellicula. However, the antibacterial activity of Ti3C2Tx is greatly affected by the morphology and concentration. Herein, an organic-inorganic hybrid of HKUST-1@Ti3C2Tx with high specific surface area and photothermal effect was designed and fabricated. By adjusting the content of Cu(CO2CH3)2·H2O and 1,3,5-benzenetricarboxylic acid, the photothermal properties of the material can be adjusted, and the release of Cu2+ can be easily reduced. The morphological characterization and fluorescent staining of bacteria which were co-incubated with HKUST-1@Ti3C2Tx confirmed that Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) had adhered to the material. NIR irradiation has enabled induced hyperthermia and the release of Cu2+ ions, causing the disruption of the bacterial membrane, resulting in cytoplasmic leakage. Furthermore, HKUST-1@Ti3C2Tx with synergistic antibacterial effect not only exhibits an excellent bactericidal rate (over 99%) but also greatly improves cytocompatibility with the reduction of the Cu2+ ion release. Therefore, organic-inorganic composites have potential for synergistic effects and non-antibiotic antibacterial activity.


Subject(s)
Metal-Organic Frameworks , Titanium , Humans , Titanium/pharmacology , Titanium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/pharmacology , Escherichia coli , Bacteria
11.
J Mater Chem B ; 11(17): 3808-3815, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37014659

ABSTRACT

Treatment of large gaps in peripheral nerves is a major clinical challenge. Artificial nerve guidance conduits (NGCs) have provided new opportunities for guiding nerve regeneration. In this study, multifunctional black phosphorus (BP) hydrogel NGCs loaded with neuregulin 1 (Nrg1) were fabricated to support peripheral-nerve regeneration: they exhibited good flexibility and nerve regeneration-related cell induction, promoted Schwann-cell proliferation and accelerated neuron-branch elongation. Nrg1 induced the proliferation and migration of Schwann cells, which had beneficial roles in promoting nerve regeneration. In vivo immunofluorescence studies revealed BP hydrogel NGCs loaded with Nrg1 promoted sciatic-nerve regeneration and axon remyelination. Our method has great potential for promoting treatment of peripheral-nerve injuries.


Subject(s)
Hydrogels , Nerve Growth Factors , Rats , Animals , Hydrogels/pharmacology , Rats, Sprague-Dawley , Sciatic Nerve/physiology , Schwann Cells , Nerve Regeneration/physiology
12.
Small ; 19(33): e2301474, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086141

ABSTRACT

Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m-2 h-1 in calm air and 25.3 kg m-2 h-1 at a gentle breeze of 2 m s-1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.

13.
Adv Sci (Weinh) ; 10(14): e2207448, 2023 05.
Article in English | MEDLINE | ID: mdl-36932048

ABSTRACT

Pyroptosis, systemic inflammation, and mitochondrial apoptosis are the three primary contributors to sepsis's multiple organ failure, the ultimate cause of high clinical mortality. Currently, the drugs under development only target a single pathogenesis, which is obviously insufficient. In this study, an acid-responsive hollow mesoporous polydopamine (HMPDA) nanocarrier that is highly capable of carrying both the hydrophilic drug NAD+ and the hydrophobic drug BAPTA-AM, with its outer layer being sealed by the inflammatory targeting peptide PEG-LSA, is developed. Once targeted to the region of inflammation, HMPDA begins depolymerization, releasing the drugs NAD+ and BAPTA-AM. Depletion of polydopamine on excessive reactive oxygen species production, promotion of ATP production and anti-inflammation by NAD+ replenishment, and chelation of BAPTA (generated by BA-AM hydrolysis) on overloaded Ca2+ can comprehensively block the three stages of sepsis, i.e., precisely inhibit the activation of pyroptosis pathway (NF-κB-NLRP3-ASC-Casp-1), inflammation pathway (IL-1ß, IL-6, and TNF-α), and mitochondrial apoptosis pathway (Bcl-2/Bax-Cyt-C-Casp-9-Casp-3), thereby restoring intracellular homeostasis, saving the cells in a state of "critical survival," further reducing LPS-induced systemic inflammation, finally restoring the organ functions. In conclusion, the synthesis of this agent provides a simple and effective synergistic drug delivery nanosystem, which demonstrates significant therapeutic potential in a model of LPS-induced sepsis.


Subject(s)
Pyroptosis , Sepsis , Humans , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/pharmacology , Cytokine Release Syndrome , NAD , Apoptosis , Inflammation/drug therapy , Homeostasis , Sepsis/drug therapy
14.
Talanta ; 258: 124436, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36940573

ABSTRACT

Biofouling is a critical issue for ion selective electrodes (ISE) in complex aqueous systems, seriously compromising the analytical performance of the electrodes (i.e., stability, sensitivity, and lifetime). Herein, an antifouling solid lead ion selective electrode (GC/PANI-PFOA/Pb2+-PISM) was successfully prepared by adding propyl 2-(acrylamidomethyl)-3,4,5-trihydroxy benzoate (PAMTB), an environmentally friendly capsaicin derivative, into the ion-selective membrane (ISM). The presence of PAMTB caused no loss in the detection performance of GC/PANI-PFOA/Pb2+-PISM (e.g., detection limit (1.9 × 10-7 M), response slope (28.5 ± 0.8 mV/decade), the response time (20 s), stability (8.6 ± 2.9 µV/s), selectivity and no water layer), whilst imparting an excellent antifouling effect with an antibacterial rate of 98.1% when the content of PAMTB in the ISM was 2.5 wt%. Further, GC/PANI-PFOA/Pb2+-PISM maintained stable antifouling properties, excellent potential response, and stability even after soaking in a high-concentration bacterial suspension for 7 days.

15.
J Colloid Interface Sci ; 641: 619-630, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36963255

ABSTRACT

Heterojunctions based on conjugated polymers (PHJs) are of promise as photocatalysts. Here, we fabricate the two-dimensional benzodithiophene (BDT) and thieno[2,3-f]benzofuran (TBF) based conjugated polymers/g-C3N4 PHJs creatively using the symmetry-breaking strategy. PD1 and PD3 with the asymmetric backbone TBF have better crystallinity. Moreover, PD3 utilizing fluorinated benzotriazole as the electron acceptor unit possesses more compact π - π stacking and higher charge mobility. The conjugated polymer PD5 with asymmetric side chains in the donor unit BDT guarantees more efficient charge transfer in the corresponding PD5/g-C3N4 PHJ while maintaining comparable light utilization rate. Consequently, PD5/g-C3N4 shows the champion performance with photocatalytic sterilization rates reaching 99.1% and 97.3% for S. aureus and E. coli. Notably, the reaction rate constant for Rhodamine B degradation of PD5/g-C3N4 is 8 times that of g-C3N4, a record high among conjugated polymers/g-C3N4. This study aims to reveal the structure - property correlation of asymmetric conjugated polymers/g-C3N4 for potential photocatalysis applications.

16.
Article in English | MEDLINE | ID: mdl-36753048

ABSTRACT

Environmental humidity and thermal control are of primary importance for fighting global warming, growing energy consumption, and greenhouse gas emissions. Sorption-based atmospheric water harvesting is an emerging technology with great potential in clean water production and passive cooling applications. However, sorption-based humidity management and their hybrid applications are limited due to the lack of energywise designs of hygroscopic materials and devices. Herein, all polymeric 3D foams are developed and evaluated as hygroscopic and photothermal materials. The gas-foaming method generates closed-cell structures with interconnected hydrophilic networks and wrinkled surfaces, expanding hygroscopic, photothermal, and evaporating areas of the 3D foams. These unique advantages lead to efficient water vapor sorption in a wide broad relative humidity (RH) range of 50-90% and efficient water release in a wide solar intensity (0.4-1 sun) and temperature range (27-80 °C). The reversible moisture sorption/release in 50 adsorption/desorption cycles highlights the excellent durability of the 3D foams compared to conventional inorganic desiccants. The 3D foams disclose passive and efficient apparent temperature regulation in warm and humid environments. Moreover, the use of the 3D foams as loose fill for fruit preservation and packaging is demonstrated for the first time by taking the merit of the 3D foams' moisture-absorbing, quick-drying, cushioning, and thermal-insulating properties. This work presents an integrated design of polymeric desiccants and scaffolds, not merely delivering stable water adsorption/desorption but also discovering innovative hybrid applications in humidity management and protective packaging.

17.
Small ; 19(17): e2206936, 2023 04.
Article in English | MEDLINE | ID: mdl-36719986

ABSTRACT

Calcium overload and ROS overproduction, two major triggers of acute kidney injury (AKI), are self-amplifying and mutually reinforcing, forming a complicated cascading feedback loop that induces kidney cell "suicide" and ultimately renal failure. There are currently no clinically effective drugs for the treatment of AKI, excluding adjuvant therapy. In this study, a porous silicon-based nanocarrier rich in disulfide bond skeleton (<50 nm) is developed that enables efficient co-loading of the hydrophilic drug borane amino complex and the hydrophobic drug BAPTA-AM, with its outer layer sealed by the renal tubule-targeting peptide PEG-LTH. Once targeted to the kidney injured site, the nanocarrier structure collapses in the high glutathione environment of the early stage of AKI, releasing the drugs. Under the action of the slightly acidic inflammatory environment and intracellular esterase, the released drugs produce hydrogen and BAPTA, which can rapidly eliminate the excess ROS and overloaded Ca2+ , blocking endoplasmic reticulum/mitochondrial apoptosis pathway (ATF4-CHOP-Bax axis, Casp-12-Casp-3 axis, Cyt-C-Casp-3 axis) and inflammatory pathway (TNF-α-NF-κB axis) from the source, thus rescuing the renal cells in the "critical survival" state and further restoring the kidney function. Overall, this nanoparticle shows substantial clinical promise as a potential therapeutic strategy for I/R injury-related diseases.


Subject(s)
Acute Kidney Injury , Calcium , Humans , Calcium/metabolism , Reactive Oxygen Species/metabolism , Feedback , Apoptosis , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Kidney/metabolism
18.
Small ; 19(6): e2205244, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436884

ABSTRACT

Liquid-crystal small molecule donor (LC-SMD) is a new type organic semiconductor, which is attractive not only for the easy synthesis and purification, well-defined chemical structures, etc., but also for the LC state that makes the crystallinity and aggregation state of molecules adjustable. Here, one new LC-SMD (a-BTR-H4) is synthesized with 1D alkoxyl and 2D thiophene-alkylthiol side-chained benzo[1,2-b:4,5-b']dithiophene core, trithiophene π-bridge, and 3-(2-ethylhexyl) rhodanine end group. a-BTR-H4 shows low LC transition temperature, 117 °C, however, counterpart material (a-BTR-H5) with the same main structure but 3-ethyl rhodanine terminal group does not show LC properties. Although a-BTR-H4/H5 show similar Ultraviolet-visible absorption spectrum and energy levels, a-BTR-H4 affords relatively high photovoltaic performances due to favorable blend morphology produced by the consistent annealing temperature of Y6-based accepters and liquid crystal temperature of donors. Preliminary results indicate that a-BTR-H4 gains a power conversion efficiency (PCE) of 11.36% for Y6-based devices, which is ascribed to better light harvest as well as balanced carrier generation and transport, while a-BTR-H5 obtains 7.57% PCE. Therefore, some materials with unique nematic LC phase have great application potential in organic electronics, and further work to utilize a-BTR-H4 for high-performance device is underway.

19.
ACS Nano ; 17(1): 472-491, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36574627

ABSTRACT

Calcium overload is one of the early determinants of the core cellular events that contribute to the pathogenesis of acute kidney injury (AKI), which include oxidative stress, ATP depletion, calcium overload, and inflammatory response with self-amplifying and interactive feedback loops that ultimately lead to cellular injury and renal failure. Excluding adjuvant therapy, there are currently no approved pharmacotherapies for the treatment of AKI. Using an adipic dihydride linker, we modified the hyaluronic acid polymer chain with a potent antioxidant, bilirubin, to produce an amphiphilic conjugate. Subsequently, we developed a kidney-targeted and reactive oxygen species (ROS)-responsive drug delivery system based on the flash nanocomplexation method to deliver a well-known intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, BA), with the goal of rescuing renal cell damage via rapidly scavenging of intracellularly overloaded Ca2+. In the ischemia-reperfusion (I/R) induced AKI rat model, a single dose of as-prepared formulation (BA 100 µg·kg-1) 6 h post-reperfusion significantly reduced renal function indicators by more than 60% within 12 h, significantly alleviated tissular pathological changes, ameliorated tissular oxidative damage, significantly inhibited apoptosis of renal tubular cells and the expression of renal tubular marker kidney injury molecule 1, etc., thus greatly reducing the risk of kidney failure. Mechanistically, the treatment with BA-loaded NPs significantly inhibited the activation of the ER stress cascade response (IRE1-TRAF2-JNK, ATF4-CHOP, and ATF6 axis) and regulated the downstream apoptosis-related pathway while also reducing the inflammatory response. The BA-loaded NPs hold great promise as a potential therapy for I/R injury-related diseases.


Subject(s)
Acute Kidney Injury , Nanoparticles , Rats , Animals , Calcium/metabolism , Reactive Oxygen Species/metabolism , Hyaluronic Acid , Bilirubin , Apoptosis , Acute Kidney Injury/drug therapy , Endoplasmic Reticulum Stress
20.
Environ Pollut ; 316(Pt 2): 120540, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36370977

ABSTRACT

This study found that the cross-linkable zinc acrylic nanosphere aggregates (NAs) as precursors were successfully prepared by a simple one-step synthesis route, and Zn,O dopped-carbon nanocomposites were obtained through temperature-controllable engineering, which showed excellent adsorption capacities for perfluorooctanoic acid (PFOA). A series of experiments were performed to investigate and compare carbon materials for the efficient removal of PFOA. The maximum adsorption capacities of PFOA absorbed on carbon nanospheres aggregates (CNAs) were calculated by the Langmuir (360.98 mg/g) and Sips models (309.65 mg/g). The kinetic model indicated there was chemical adsorption and physical adsorption in the adsorption process. Van der Waals force and electrostatic interactions might be the dominant mechanism of the adsorption process. Additionally, pore-filling also played a role in the adsorption process. Furthermore, the adsorption efficiency was still above 90% after five cycles. The selective adsorption ability was tested through various pollutants (metal ions and dye solutions) absorbed by the CNAs. Our results proved that carbon nanosphere aggregates (CNAs) are expected to be outstanding adsorption materials for the decontamination of PFOA from wastewater.


Subject(s)
Nanospheres , Water Pollutants, Chemical , Adsorption , Carbon , Zinc , Water Pollutants, Chemical/analysis , Water/chemistry , Kinetics , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...