Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36771893

ABSTRACT

Bismaleimide (BMI) resin is an excellent performance resin, mainly due to its resistance to the effect of heat and its insulating properties. However, its lack of toughness as a cured product hampers its application in printed circuit boards (PCBs). Herein, a branched structure via Michael addition was introduced to a BMI system to reinforce its toughness. Compared with a pure BMI sample, the flexural strength of the modified BMI was enhanced, and its maximum value of 189 MPa increased by 216%. The flexural modulus of the cured sample reached 5.2 GPa. Using a scanning electron microscope, the fracture surfaces of BMI samples and a transition from brittle fracture to ductile fracture were observed. Furthermore, both the dielectric constant and the dielectric loss of the cured resin decreased. The breakdown field strength was raised to 37.8 kV/mm and the volume resistivity was improved to varying degrees. Consequently, the resulting modified BMI resin has the potential for wide application in high-frequency and low-dielectric resin substrates, and the modified BMI resin with a structure including three different diamines can meet the needs of various applications.

2.
Polymers (Basel) ; 14(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36236181

ABSTRACT

Bismaleimide (BMI) resin has great potential in aerospace, electronic, and machinery fields due to its extraordinary thermal stability. Owing to BMI's lower impact strength, various modified BMI resins have been prepared using CTBN, PEEK, fillers, and hyperbranched polymer to achieve higher impact strength. However, enhancement of toughness causes deterioration of other performance, such as Tg, thermal stability, and brittleness. In this work, BMI resin modified by hyperbranched polyimide (HBPI) was obtained. HBPI designed with flexible segments, unsaturated bonds, and a low degree of branching was synthesized. FT-IR and 13C-NMR were applied to confirm the successful fabrication of HBPI. The mechanical strength and dielectric properties of cured BMI resin containing various levels of HBPI were analyzed systematically. The impact and bending strength were improved significantly with increased HBPI content. When the content of HBPI is 40 wt.%, the impact strength and bending strength reach the maximum value of 32 kJ/mm and 88 MPa. In addition, the BMI cured with HBPI exhibits enhanced bending modulus to the value of 5.9 GPa. Furthermore, the dielectric strength of cured resin was improved to 28.3 kV/mm. The improved mechanical strength and enhanced dielectric properties are attributed to the increasing free volume induced by HBPI. These results indicate the promise of BMI resin modified by HBPI applied in insulating coatings and low dielectric laminates used in high frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...