Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 148(13): 3045-3056, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37272284

ABSTRACT

Background: The recent success of boron neutron capture therapy (BNCT) for cancer treatment has attracted considerable attention. Because irradiated neutrons penetrate deep into solid tumor tissue, BNCT efficacy is strongly influenced by cell pathophysiology in tumors. The tumor microenvironment critically influences tumor pathophysiology, but its effects on BNCT remain unexplored. Methods: We used a pancreatic tumor as a model to develop a high-throughput 3D tumor spheroid platform for evaluating BNCT efficacy under different microenvironment conditions. We expanded our system to serve as a transwell-like device in order to investigate the influence of stromal fibroblasts in the tumor microenvironment. Results: With the use of the proposed microfluidic chip and a laboratory pipette, more than 40 spheroids with controllable diameters (standard deviation <10%) could be cultured on a chip for more than 10 days. The response to BNCT from each spheroid can be monitored in real time. By using pancreatic tumor spheroids of two different diameters, we found that large spheroids, characterized by more hypoxic microenvironments, exhibited lower BNCT susceptibility. The cells in the hypoxic region expressed the HIF1-α signal, which is crucial in many therapeutic resistance signal pathways. In addition, the heterogeneous presence of stemness markers (Oct-4, Sox-2, and CD 44) implied that the underlying BNCT resistance mechanism was sophisticated. In the presence of fibroblasts, we found an association between ß-catenin nuclear translocation and BNCT resistance; membrane contacts from fibroblasts were found to be indispensable for translocation activation. Conclusions: In summary, by means of easily accessible microfluidic engineering, we developed tumor spheroids to recapture the pathophysiological characteristics of pancreatic tumors. Our data suggest that hypoxia and fibrosis can reduce BNCT efficacy in pancreatic cancer treatment. Considering the growing requirement for drug screening in personalized medicine, our findings and the developed method are expected to improve the fundamental understanding of BNCT and facilitate broad applications of BNCT in clinical settings.


Subject(s)
Boron Neutron Capture Therapy , Pancreatic Neoplasms , Humans , Boron Neutron Capture Therapy/methods , Microfluidics , Pancreatic Neoplasms/radiotherapy , Boron Compounds/therapeutic use , Tumor Microenvironment
2.
Cancers (Basel) ; 13(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439214

ABSTRACT

Pancreatic cancer is a leading cause of cancer death, and boron neutron capture therapy (BNCT) is one of the promising radiotherapy techniques for patients with pancreatic cancer. In this study, we evaluated the biological effectiveness of BNCT at multicellular levels using in vitro and in silico models. To recapture the phenotypic characteristic of pancreatic tumors, we developed a cell self-assembly approach with human pancreatic cancer cells Panc-1 and BxPC-3 cocultured with MRC-5 fibroblasts. On substrate with physiological stiffness, tumor cells self-assembled into 3D spheroids, and the cocultured fibroblasts further facilitated the assembly process, which recapture the influence of tumor stroma. Interestingly, after 1.2 MW neutron irradiation, lower survival rates and higher apoptosis (increasing by 4-fold for Panc-1 and 1.5-fold for BxPC-3) were observed in 3D spheroids, instead of in 2D monolayers. The unexpected low tolerance of 3D spheroids to BNCT highlights the unique characteristics of BNCT over conventional radiotherapy. The uptake of boron-containing compound boronophenylalanine (BPA) and the alteration of E-cadherin can partially contribute to the observed susceptibility. In addition to biological effects, the probability of induced α-particle exposure correlated to the multicellular organization was speculated to affect the cellular responses to BNCT. A Monte Carlo (MC) simulation was also established to further interpret the observed survival. Intracellular boron distribution in the multicellular structure and related treatment resistance were reconstructed in silico. Simulation results demonstrated that the physical architecture is one of the essential factors for biological effectiveness in BNCT, which supports our in vitro findings. In summary, we developed in vitro and in silico self-assembly 3D models to evaluate the effectiveness of BNCT on pancreatic tumors. Considering the easy-access of this 3D cell-assembly platform, this study may not only contribute to the current understanding of BNCT but is also expected to be applied to evaluate the BNCT efficacy for individualized treatment plans in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...