Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Monit ; 23: 4954-4960, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29038420

ABSTRACT

BACKGROUND Emotional state can be affected by different training loads. The aim of this study was to explore the changes of rat emotional state, as well as the mRNA and protein expressions of N-methyl-D-aspartate receptors (NMDARs), postsynaptic density 95 (PSD-95), and kinesin family member 17 (KIF-17) in the hippocampus, by long-term moderate-intensity and high-intensity training models in rats. MATERIAL AND METHODS The exercise model of SD rats was set up by treadmill running of moderate and high intensities for 4 weeks. The rats in the moderate-intensity training group were given endurance training with increasing intensity, while rats in the high-intensity training group were given high-speed training, and those in the normal control group were also established. The body weights of rats were measured before and after exercise to determine weight reduction. Real-time PCR and Western blotting were used to detect the mRNA and protein expressions of NMDARs, PSD-95, and KIF-17 in hippocampus of rats under different training loads. RESULTS Compared with the control group, the rats in the moderate-intensity training group had better body condition and emotional state, while the rats in the high-intensity training group had poor body condition and emotional state. The mRNA and protein expression of PSD-95, KIF-17, and NMDARs in the moderate-intensity training group were significantly elevated (P<0.05) while those in the high-intensity training group were suppressed (P<0.05). CONCLUSIONS Different training loads have remarkable influences on the cognition, emotion, and mental status of rats, and can affect the mRNA and protein expressions of NMDARs, PSD-95, and KIF-17 in rats. Appropriate training loads alleviate hypoxia damage to the hippocampus, and also effectively improve hippocampus function.


Subject(s)
Emotions/physiology , Physical Conditioning, Animal/physiology , Animals , Blotting, Western , Body Weight , Disks Large Homolog 4 Protein/metabolism , Disks Large Homolog 4 Protein/physiology , Gene Expression Regulation/genetics , Hippocampus/metabolism , Hippocampus/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Kinesins/metabolism , Kinesins/physiology , Male , Post-Synaptic Density , RNA, Messenger , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...