Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500654

ABSTRACT

The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.


Subject(s)
Hydrogen Peroxide , Sulfides , Sulfides/chemistry , Hydrogen Peroxide/chemistry , Spectroscopy, Fourier Transform Infrared , Catalysis
2.
Appl Opt ; 60(11): 3062-3070, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33983201

ABSTRACT

Terahertz absorbers combined with phase-changing VO2 are a class of stealth materials with adjustable absorptance. However, such absorbers still suffer from insufficient absorption bandwidth. We propose a three-layer terahertz (THz) absorber, consisting of an array of diagonally distributed double-sized VO2 disks on a silica-coated gold film. We find this structure can generate the superposition of three resonant absorption peaks to broaden the absorption band. The finite element simulation (FES) results show that the absorption bandwidth can be adjusted from 2.63 to 5.04 THz by simply changing the sizes of the VO2 disks. In addition, the peak absorptance can be continuously regulated from 9.8% to 96% by varying the conductivity of VO2. Finally, the absorber is polarization-insensitive and has wide-angle absorption. The wide absorption band and adjustable bandwidth of the absorbers have important applications potentially for intelligent stealth materials.

SELECTION OF CITATIONS
SEARCH DETAIL