Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Acta Pharmacol Sin ; 40(4): 546-555, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29930276

ABSTRACT

Despite more effective chemotherapy combined with limb-salvage surgery for the osteosarcoma treatment, survival rates for osteosarcoma patients have stagnated over the past three decades due to the poor prognosis. Osteosarcoma cancer stem cells (OSCs) are responsible for the growth and metastasis of osteosarcoma. The existence of OSCs offers a theoretical explanation for therapeutic failures including tumor recurrence, metastasis, and drug resistance. Understanding the pathways that regulate properties of OSCs may shed light on mechanisms that lead to osteosarcoma and suggest better modes of treatment. In this study, we showed that the expression level of Kruppel-like factor 4 (KLF4) is highly associated with human osteosarcoma cancer stemness. KLF4-overexpressed osteosarcoma cells displayed characteristics of OSCs: increased sphere-forming potential, enhanced levels of stemness-associated genes, great chemoresistance to adriamycin and CDDP, as well as more metastasis potential. Inversely, KLF4 knockdown could reduce colony formation in vitro and inhibit tumorigenesis in vivo, supporting an oncogenic role for KLF4 in osteosarcoma pathogenesis. Furthermore, KLF4 was shown to activate the p38 MAPK signaling pathway to promote cancer stemness. Altogether, our studies uncover an essential role for KLF4 in regulation of OSCs and identify KLF4-p38 MAPK axis as a potential therapeutic target for osteosarcoma treatment.


Subject(s)
Kruppel-Like Transcription Factors/genetics , Neoplastic Stem Cells/metabolism , Osteosarcoma/genetics , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred BALB C , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Phenotype , RNA, Small Interfering/pharmacology , Tumor Cells, Cultured , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Chin J Nat Med ; 16(11): 829-837, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30502764

ABSTRACT

Pharmacological activities and adverse side effects of ginkgolic acids (GAs), major components in extracts from the leaves and seed coats of Ginkgo biloba L, have been intensively studied. However, there are few reports on their hepatotoxicity. In the present study, the metabolism and hepatotoxicity of GA (17 : 1), one of the most abundant components of GAs, were investigated. Kinetic analysis indicated that human and rat liver microsomes shared similar metabolic characteristics of GA (17 : 1) in phase I and II metabolisms. The drug-metabolizing enzymes involved in GA (17 : 1) metabolism were human CYP1A2, CYP3A4, UGT1A6, UGT1A9, and UGT2B15, which were confirmed with an inhibition study of human liver microsomes and recombinant enzymes. The MTT assays indicated that the cytotoxicity of GA (17 : 1) in HepG2 cells occurred in a time- and dose-dependent manner. Further investigation showed that GA (17 : 1) had less cytotoxicity in primary rat hepatocytes than in HepG2 cells and that the toxicity was enhanced through CYP1A- and CYP3A-mediated metabolism.


Subject(s)
Ginkgo biloba/chemistry , Liver/drug effects , Plant Extracts/toxicity , Salicylates/metabolism , Salicylates/toxicity , Animals , Cells, Cultured , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP3A/metabolism , Glucuronosyltransferase/metabolism , Hepatocytes/chemistry , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Humans , Kinetics , Liver/chemistry , Liver/enzymology , Liver/metabolism , Microsomes, Liver/chemistry , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Rats , Rats, Sprague-Dawley , Salicylates/chemistry , UDP-Glucuronosyltransferase 1A9
3.
Chin J Nat Med ; 15(5): 375-383, 2017 May.
Article in English | MEDLINE | ID: mdl-28558873

ABSTRACT

Ginkgolic acids (GAs), primarily found in the leaves, nuts, and testa of ginkgo biloba, have been identified with suspected allergenic, genotoxic and cytotoxic properties. However, little information is available about GAs toxicity in kidneys and the underlying mechanism has not been thoroughly elucidated so far. Instead of GAs extract, the renal cytotoxicity of GA (15 : 1), which was isolated from the testa of Ginkgo biloba, was assessed in vitro by using MDCK cells. The action of GA (15 : 1) on cell viability was evaluated by the MTT and neutral red uptake assays. Compared with the control, the cytotoxicity of GA (15 : 1) on MDCK cells displayed a time- and dose-dependent manner, suggesting the cells mitochondria and lysosomes were damaged. It was confirmed that GA (15 : 1) resulted in the loss of cells mitochondrial trans-membrane potential (ΔΨm). In propidium iodide (PI) staining analysis, GA (15 : 1) induced cell cycle arrest at the G0/G1 and G2/M phases, influencing on the DNA synthesis and cell mitosis. Characteristics of necrotic cell death were observed in MDCK cells at the experimental conditions, as a result of DNA agarose gel electrophoresis and morphological observation of MDCK cells. In conclusion, these findings might provide useful information for a better understanding of the GA (15 : 1) induced renal toxicity.


Subject(s)
Cell Cycle Checkpoints/drug effects , Ginkgo biloba/toxicity , Lysosomes/drug effects , Mitochondria/drug effects , Necrosis/physiopathology , Plant Extracts/toxicity , Salicylates/toxicity , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Dogs , Ginkgo biloba/chemistry , Lysosomes/metabolism , Madin Darby Canine Kidney Cells , Mitochondria/metabolism , Necrosis/drug therapy , Necrosis/metabolism , Salicylates/chemistry
4.
Acta Pharmacol Sin ; 38(8): 1184-1194, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28552915

ABSTRACT

Uridine diphosphate-glucuronosyltransferase (UGT) 2B7 is expressed mostly in the human liver, lung and kidney and can transfer endogenous glucuronide group into its substrate and impact the pharmacological effects of several drugs such as estriol, AZT and morphine. UGT2B7 and its allelic variants can dimerize with the homologous enzymes UGT1A1 and UGT1A9, as well as their allelic variants, and then change their enzymatic activities in the process of substrate catalysis. The current study was designed to identify this mechanism using morphine as the substrate of UGT2B7. Single-recombinant allozymes, including UGT2B7*1 (wild type), UGT2B7*71S (A71S, 211G>T), UGT2B7*2 (H268Y, 802C>T), UGT2B7*5 (D398N, 1192G>A), and double-recombinant allozymes formed by the dimerization of UGT1A9*1 (wild type), UGT1A9*2 (C3Y, 8G>A), UGT1A9*3 (M33T, 98T>C), UGT1A9*5 (D256N, 766G>A), UGT1A1 (wild type) with its splice variant UGT1A1b were established and incubated with morphine in vitro. Each sample was analyzed with HPLC-MS/MS. All enzyme kinetic parameters were then measured and analyzed. From the results, the production ratio of its aberrant metabolism and subsequent metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), changes regioselectively. Double-recombinant allozymes exhibit stronger enzymatic activity catalyzing morphine than the single-recombinant alloyzymes. Compared to UGT2B7*1, UGT2B7*2 singles or doubles have lower Km values for M3G and M6G, whereas UGT2B7*5 allozymes perform opposite effects. The double allozymes of UGT1A9*2 or UGT1A9*5 with UGT2B7 tend to produce M6G. Interestingly, the majority of single or double allozymes significantly reduce the ratio of M3G to M6G. The UGT1A9*2-UGT2B7*1 double enzyme has the lowest M3G:M6G ratio, reflecting that more M6G would form in morphine glucuronide metabolism. This study demonstrates that UGT2B7 common SNPs and their dimers with UGT1A1 and UGT1A9 and their allelic variants can regioselectively affect the generation of two metabolites of morphine via altering the CLint ratios of M3G to M6G. These results may predict the effectiveness of morphine antinociception in individualized opioid treatment.


Subject(s)
Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Morphine/metabolism , Alleles , Genetic Variation , Glucuronosyltransferase/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Recombinant Proteins
5.
Oncotarget ; 8(17): 29138-29150, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28418861

ABSTRACT

Uridine diphosphate-glucuronosyltransferase (UGT) 2B7, as one of significant drug enzymes, is responsible on the glucuronidation of abundant endobiotics or xenobiotics. We here report that it is markedly repressed in the tumor tissues of colorectal carcinoma (CRC) patients. Accordingly, morphine in CRC cells will stimulate the expression of its main metabolic enzyme, UGT2B7 during tolerance generation by activating the positive signals in histone 3, especially for trimethylated lysine 27 (H3K4Me3) and acetylated lysine 4 (H3K27Ac). Further study reveals that brain-derived neutrophilic factor (BDNF), a secretory neurotrophin, enriched in CRC can interact and inhibit UGT2B7 by primarily blocking the positive signals of H3K4Me3 as well as activating H3K27Ac on the promoter region of UGT2B7. Meanwhile, BDNF repression attributes to the sensitizations of main core factors in poly-comb repressive complex (PRC) 1 rather than PRC2 as the reason of the depression of SUZ12 in the later complex. Besides that, the productions of two main morphine glucuronides are both increased in the BDNF deficient or TSA and BIX-01294 treated morphine tolerance-like HCT-116 cells. On the same condition, active metabolite, morphine-6-glucuronide (M6G) was accumulated more than inactive M3G. Our findings imply that enzymatic activity enhancement and substrate regioselective catalysis alteration of UGT2B7 may release morphine tolerance under the cure of tumor-induced pain.


Subject(s)
Analgesics, Opioid/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Colorectal Neoplasms/genetics , Epigenetic Repression , Gene Expression Regulation, Neoplastic , Glucuronosyltransferase/genetics , Adult , Aged , Aged, 80 and over , Analgesics, Opioid/therapeutic use , Azepines/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Cancer Pain/drug therapy , Cell Line, Tumor , Colorectal Neoplasms/pathology , Drug Tolerance/genetics , Female , Gene Knockdown Techniques , Glucuronosyltransferase/metabolism , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Morphine/pharmacology , Morphine/therapeutic use , Morphine Derivatives/metabolism , Neoplasm Proteins , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic/genetics , Quinazolines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factors , Up-Regulation
6.
Yao Xue Xue Bao ; 52(1): 1-7, 2017 Jan.
Article in Chinese | MEDLINE | ID: mdl-29911367

ABSTRACT

Pharmacogenomics is defined as research into the relationship between inherited genetic variations in drug metabolizing enzymes, transporters and targets and individual variations in person's response to drugs (fate of drug in human body, safety and efficacy). Personalized dosing is pharmacogenomics-based therapeutic regimen tailored to other individual characteristics. This article summarizes the progress in clinical application of personalized dosing from the perspective of pharmacogenomics of drug metabolizing enzymes and transporters, and proposes to draw attention to key scientific issues (e.g., the effect of multi-genes and non-genetic factors on drug effects, the integration of therapeutic drug monitoring and pharmacogenomics); meanwhile, bottle necks in the clinical application and corresponding strategies are proposed.


Subject(s)
Inactivation, Metabolic , Membrane Transport Proteins , Pharmacogenetics , Drug Monitoring , Humans , Precision Medicine
7.
Yao Xue Xue Bao ; 52(1): 44-50, 2017 Jan.
Article in Chinese | MEDLINE | ID: mdl-29911377

ABSTRACT

In our preliminary studies, we observed zolmitriptan (ZOL) treatment led to induction of CYP3A2 in male not female rats. To figure out the reason is of great significance for drug-drug interactions and personalized administration. Since growth hormone (GH) is known as the major mechanistic determinant of sexually-dimorphic gene expression like CYP3A2 in rat liver, the impacts of ZOL on both plasma GH levels in non monosodium glutamate (MSG)-treated rats and CYP3A2 expression in GH depleted MSG-treated rats were studied. ZOL was shown to partially suppress GH levels in both genders. Furthermore, CYP3A2 protein and mRNA level declined in male not female MSG-treated rats. In order to study the possible molecular events involved in the depression of GH and gender-selective induction on rat CYP3A2 by ZOL, the mRNA and protein level(whole protein and nuclear protein) of hepatocyte nuclear factor 4α (HNF4α) was investigated. Nuclear accumulation of HNF4α was observed in the normal male not female rat liver tissue following ZOL treatment. However, this kind of nuclear translocation did not occur in rat hepatocytes and MSG-treated rats. These findings demonstrated CYP3A2 inducibility by ZOL was gender-selective. GH and HNF4α may play an important role in CYP3A2 induction.


Subject(s)
Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/metabolism , Growth Hormone/antagonists & inhibitors , Oxazolidinones/pharmacology , Sex Factors , Tryptamines/pharmacology , Animals , Hepatocyte Nuclear Factor 4/metabolism , Male , RNA, Messenger , Rats , Sodium Glutamate
8.
Sci Rep ; 6: 33338, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27629937

ABSTRACT

Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 µM) is 1.4-time more than that of M6G (80.31 ± 21.75 µM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 µM for morphine and IC50 = 6.04 ± 0.86 µM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine.


Subject(s)
Analgesics, Opioid/metabolism , Drug Tolerance/genetics , Morphine/metabolism , Organic Anion Transporters/genetics , Analgesics, Opioid/pharmacology , Animals , Cyclosporine/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Morphine/pharmacology , Morphine Derivatives/metabolism , Morphine Derivatives/pharmacology , Nanoparticles/chemistry , Nanoparticles/metabolism , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Proteins/genetics , Proteins/metabolism
9.
Chin J Nat Med ; 14(7): 549-60, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27507206

ABSTRACT

NTCP is specifically expressed on the basolateral membrane of hepatocytes, participating in the enterohepatic circulation of bile salts, especially conjugated bile salts, to maintain bile salts homeostasis. In addition, recent studies have found that NTCP is a functional receptor of HBV and HDV. Therefore, it is important to study the interaction between drugs and NTCP and identify the inhibitors/substrates of NTCP. In the present study, a LLC-PK1 cell model stably expressing human NTCP was established, which was simple and suitable for high throughput screening, and utilized to screen and verify the potential inhibitors of NTCP from 102 herbal medicinal ingredients. The results showed that ginkgolic acid (GA) (13 : 0), GA (15 : 1), GA (17 : 1), erythrosine B, silibinin, and emodin have inhibitory effects on NTCP uptake of TCNa in a concentration-dependent manner. Among them, GA (13 : 0) and GA (15 : 1) exhibited the stronger inhibitory effects, with IC50 values being less than 8.3 and 13.5 µmol·L(-1), respectively, than the classical inhibitor, cyclosporin A (CsA) (IC50 = 20.33 µmol·L(-1)). Further research demonstrated that GA (13 : 0), GA (15 : 1), GA (17 : 1), silibinin, and emodin were not substrates of NTCP. These findings might contribute to a better understanding of the disposition of the herbal ingredients in vivo, especially in biliary excretion.


Subject(s)
Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Symporters/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Humans , Kinetics , LLC-PK1 Cells , Models, Biological , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/metabolism , Plant Extracts/chemistry , Structure-Activity Relationship , Swine , Symporters/chemistry , Symporters/metabolism
10.
Sci Rep ; 6: 23763, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27025983

ABSTRACT

Uridine diphosphate glucuronosyltransferase 1A (UGT1A) is a major phase II drug-metabolism enzyme superfamily involved in the glucuronidation of endobiotics and xenobiotics in humans. Many polymorphisms in UGT1A genes are reported to inhibit or decrease UGT1A activity. In this study, two UGT1A1 allozymes, UGT1A1 wild-type and a splice mutant, as well as UGT1A9 wild-type and its three UGT1A9 allozymes, UGT1A9*2(C3Y), UGT1A9*3(M33T), and UGT1A9*5(D256N) were single- or double-expressed in a Bac-to-Bac expression system. Dimerization of UGT1A1 or UGT1A9 allozymes was observed via fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. SNPs of UGT1A altered the ability of protein-protein interaction, resulting in differential FRET efficiencies and donor-acceptor r distances. Dimerization changed the chemical regioselectivity, substrate-binding affinity, and enzymatic activity of UGT1A1 and UGT1A9 in glucuronidation of quercetin. These findings provide molecular insights into the consequences of homozygous and heterozygous UGT1A1 and UGT1A9 allozymes expression on quercetin glucuronidation.


Subject(s)
Glucuronosyltransferase/chemistry , Quercetin/chemistry , Animals , Glycosylation , Humans , Isoenzymes/chemistry , Kinetics , Protein Multimerization , Sf9 Cells , Spodoptera , Substrate Specificity , UDP-Glucuronosyltransferase 1A9
11.
Ther Clin Risk Manag ; 11: 449-67, 2015.
Article in English | MEDLINE | ID: mdl-25848291

ABSTRACT

BACKGROUND: Coprescribing of clopidogrel and other drugs is common. Available reviews have addressed the drug-drug interactions (DDIs) when clopidogrel is as an object drug, or focused on combination use of clopidogrel and a special class of drugs. Clinicians may still be ignorant of those DDIs when clopidogrel is a precipitant drug, the factors determining the degree of DDIs, and corresponding risk management. METHODS: A literature search was performed using PubMed, MEDLINE, Web of Science, and the Cochrane Library to analyze the pharmacokinetic DDIs of clopidogrel and new P2Y12 receptor inhibitors. RESULTS: Clopidogrel affects the pharmacokinetics of cerivastatin, repaglinide, ferulic acid, sibutramine, efavirenz, and omeprazole. Low efficacy of clopidogrel is anticipated in the presence of omeprazole, esomeprazole, morphine, grapefruit juice, scutellarin, fluoxetine, azole antifungals, calcium channel blockers, sulfonylureas, and ritonavir. Augmented antiplatelet effects are anticipated when clopidogrel is coprescribed with aspirin, curcumin, cyclosporin, St John's wort, rifampicin, and angiotensin-converting enzyme inhibitors. The factors determining the degree of DDIs with clopidogrel include genetic status (eg, cytochrome P540 [CYP]2B6*6, CYP2C19 polymorphism, CYP3A5*3, CYP3A4*1G, and CYP1A2-163C.A), species differences, and dose strength. The DDI risk does not exhibit a class effect, eg, the effects of clopidogrel on cerivastatin versus other statins, the effects of proton pump inhibitors on clopidogrel (omeprazole, esomeprazole versus pantoprazole, rabeprazole), the effects of rifampicin on clopidogrel versus ticagrelor and prasugrel, and the effects of calcium channel blockers on clopidogrel (amlodipine versus P-glycoprotein-inhibiting calcium channel blockers). The mechanism of the DDIs with clopidogrel involves modulating CYP enzymes (eg, CYP2B6, CYP2C8, CYP2C19, and CYP3A4), paraoxonase-1, hepatic carboxylesterase 1, P-glycoprotein, and organic anion transporter family member 1B1. CONCLUSION: Effective and safe clopidogrel combination therapy can be achieved by increasing the awareness of potential changes in efficacy and toxicity, rationally selecting alternatives, tailoring drug therapy based on genotype, checking the appropriateness of physician orders, and performing therapeutic monitoring.

12.
Eur J Pharm Biopharm ; 88(3): 759-67, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24980806

ABSTRACT

Ginkgolic acids (GAs) in natural product Ginkgobiloba L. are the pharmacological active but also toxic components. Two compounds, GA (C15:1) and GA (C17:1) are the most abundant GAs. In this study, several in vitro and in vivo models were applied to investigate transport mechanism of GAs. A rapid and sensitive LC-MS/MS method for the simultaneous determination of GA (C15:1) and GA (C17:1) was applied to analyze the biological specimens. The Papp(AP→BL) values of GA (C15:1) and GA (C17:1) were 1.66-2.13×10(-)(6)cm/s and 1.34-1.85×10(-)(6)cm/s determined using MDCK and MDCK-MDR1 cell monolayers, respectively. The Papp(BL→AP) were remarkably greater in the MDCK-MDR1 cell line, which were 6.77-11.2×10(-)(6)cm/s for GA (C15:1) and 4.73-5.15×10(-)(6)cm/s for GA (C17:1). Similar results were obtained in LLC-PK1 and LLC-PK1-BCRP cell monolayers. The net efflux ratio of GA (C15:1) and GA (C17:1) in both cell models was greater than 2 and markedly reduced by the presence of Cyclosporin A (CsA) or GF120918, inhibitors of P-gp and BCRP, suggesting that GAs are P-gp and BCRP substrates. The results from a rat bioavailability study also showed that co-administrating CsA intravenously (20mg/kg) could significantly increase GA (C15:1) and GA (C17:1) AUC0-t by 1.46-fold and 1.53-fold and brain concentration levels of 1.43-fold and 1.51-fold, respectively, due to the inhibition of P-gp and BCRP efflux transporters by CsA.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Cyclosporine/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Salicylates/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , Animals , Biological Availability , Biological Transport , Brain/drug effects , Brain/metabolism , Cell Culture Techniques , Cell Survival/drug effects , Dogs , LLC-PK1 Cells , Madin Darby Canine Kidney Cells , Male , Neoplasm Proteins/genetics , Rats, Sprague-Dawley , Salicylates/blood , Salicylates/toxicity , Substrate Specificity , Swine , Tissue Distribution , Transfection
13.
Drug Metab Rev ; 46(3): 283-90, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24796860

ABSTRACT

Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.


Subject(s)
Biological Transport/physiology , Membrane Transport Proteins/metabolism , Pharmaceutical Preparations/metabolism , Animals , Cell Membrane/metabolism , Humans , Stereoisomerism , Substrate Specificity
14.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(2): 135-40, 2014 03.
Article in Chinese | MEDLINE | ID: mdl-24782366

ABSTRACT

OBJECTIVE: To establish a HPLC method for simultaneous determination of four major constituents (madecassoside, asiaticoside, madecassic acid and asiatic acid) in Centella asiatica (L.) urban extracts. METHODS: The analysis was performed on an Agilent 1100 HPLC system with a ZORBAX Eclipse XDB-C8 column (4.6 mm×150 mm, 5µm). The four major constituents were separated with gradient mobile phase that consists of 1mmol/L potassium dihydrogen phosphate and acetonitrile at the detection wavelength of 205 nm. RESULTS: The four major constituents all had good linear response in the determination ranges (R(2)≥0.9998). The average recoveries (n=9) were 97.4%, 93.7%, 97.5% and 99.8% with RSDs of 3.4%, 1.4%, 4.7% and 4.4%, respectively. CONCLUSION: The developed method is sensitive and has good reproducibility, which can be used as a reference for quality control of Centella asiatica (L.) urban extracts.


Subject(s)
Centella/chemistry , Chromatography, High Pressure Liquid/methods , Triterpenes/analysis , Pentacyclic Triterpenes/analysis , Plant Extracts/analysis , Reproducibility of Results
15.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(2): 160-3, 2014 03.
Article in Chinese | MEDLINE | ID: mdl-24782371

ABSTRACT

OBJECTIVE: To determine the enantiomeric impurity contents of domestic timolol maleate in bulk drugs and eye drops. METHODS: Enantiomer impurity of timolol was assayed by chiral high performance liquid chromatography. The chromatographic conditions were as follows:chiralcel OD chiral column (4.6 mm ×150 mm, 5µm), detection wavelength:297 nm, mobile phase:hexane-isopropanol-diethylamine (480:20:1), column temperature:25 ℃, flow rate:1.0 ml/min, sample injection volume:5 µl. RESULTS: The resolution between R- and S-timolol was more than 4. The enantiomeric impurity contents were less than 0.67% on average in two batches of timolol maleate bulk drugs, and 0.31% on average in three batches of timolol maleate eye drops. CONCLUSION: Enantiomeric impurity contents in each batch of products all meet European Pharmacopoeia criteria, which can be used as references in Chinese Pharmacopoeia criteria.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drug Contamination , Ophthalmic Solutions/analysis , Timolol/analysis , Ophthalmic Solutions/standards , Stereoisomerism , Timolol/standards
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(2): 164-7, 2014 03.
Article in Chinese | MEDLINE | ID: mdl-24782372

ABSTRACT

OBJECTIVE: To determine the contents of L-enantiomer impurity in valaciclovir hydrochloride. METHODS: Valaciclovir enantiomers were separated and determined by using chiral high performance liquid chromatography. Chromatographic conditions were as follows:CROWNPAK(®) CR(+) chiral column (4 mm×150 mm, 5 µm), detection wavelength:254 nm, mobile phase:water-methanol-perchloric acid (19:1:0.1), flow rate:0.75 ml/min, sample injection volume:10 µl. RESULTS: D-valaciclovir was completely separated from L-enantiomer impurity. The contents of L-enantiomer impurity were 0.65%-2.62% on average in 8 batches of valaciclovir hydrochloride. CONCLUSION: Enantiomeric impurity contents in each batch of products were all meet criteria of United States Pharmacopeia, which can be used in criteria of Chinese Pharmacopeia as references.


Subject(s)
Acyclovir/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Valine/analogs & derivatives , Acyclovir/analysis , Stereoisomerism , Valacyclovir , Valine/analysis
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(2): 168-74, 2014 03.
Article in Chinese | MEDLINE | ID: mdl-24782373

ABSTRACT

OBJECTIVE: To construct the vectors of human glutathione S-transferase A1 (GSTA1), P1 (GSTP1), T1(GSTT1) genes and express in Escherichia coli (E. coli). METHODS: Human GSTA1, GSTP1 and GSTT1 gene whole length cDNAs were amplified by RT-PCR and then subcloned into pET-28a(+) vectors. The proteins were expressed in E. coli BL21(DE3). After purified by Ni2+ affinity chromatography, the enzymatic activities of GSTs were measured with 1-chloro-2,4 -dinitrobenzene (CDNB) as substrate. RESULTS: The correct GSTA1, GSTP1 and GSTT1 genes were cloned. And soluble GSTA1, GSTT1, GSTP1 proteins were expressed in E.coli. After purification, GSTA1, GSTT1 and GSTP1 showed good enzymatic activities, which were 17.55, 0.02, 18.75 µmol·min-1·mg-1, respectively. CONCLUSION: The expression plasmids for GSTA1, GSTT1 and GSTP1 have been constructed and the recombinant proteins are expressed successfully.


Subject(s)
Glutathione S-Transferase pi/biosynthesis , Glutathione Transferase/biosynthesis , DNA, Complementary/genetics , Escherichia coli/genetics , Genetic Vectors , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Humans , Recombinant Proteins/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
18.
Ther Clin Risk Manag ; 10: 217-27, 2014.
Article in English | MEDLINE | ID: mdl-24707182

ABSTRACT

BACKGROUND: Personalized medicine should be encouraged because patients are complex, and this complexity results from biological, medical (eg, demographics, genetics, polypharmacy, and multimorbidities), socioeconomic, and cultural factors. Levofloxacin (LVX) is a broad-spectrum fluoroquinolone antibiotic. Awareness of personalized therapeutics for LVX seems to be poor in clinical practice, and is reflected in prescribing patterns. Pharmacokinetic-pharmacodynamic studies have raised concerns about suboptimal patient outcomes with the use of LVX for some Gram-negative infections. Meanwhile, new findings in LVX therapeutics have only been sporadically reported in recent years. Therefore, an updated review on personalized LVX treatment with a focus on pharmacokinetic concerns is necessary. METHODS: Relevant literature was identified by performing a PubMed search covering the period from January 1993 to December 2013. We included studies describing dosage adjustment and factors determining LVX pharmacokinetics, or pharmacokinetic-pharmacodynamic studies exploring how best to prevent the emergence of resistance to LVX. The full text of each included article was critically reviewed, and data interpretation was performed. RESULTS: In addition to limiting the use of fluoroquinolones, measures such as reducing the breakpoints for antimicrobial susceptibility testing, choice of high-dose short-course of once-daily LVX regimen, and tailoring LVX dose in special patient populations help to achieve the validated pharmacokinetic-pharmacodynamic target and combat the increasing LVX resistance. Obese individuals with normal renal function cleared LVX more efficiently than normal-weight individuals. Compared with the scenario in healthy subjects, standard 2-hour spacing of calcium formulations and oral LVX was insufficient to prevent a chelation interaction in cystic fibrosis patients. Inconsistent conclusions were derived from studies of the influence of sex on the pharmacokinetics of LVX, which might be associated with sample size and administration route. Children younger than 5 years cleared LVX nearly twice as fast as adults. Patients in intensive care receiving LVX therapy showed significant pharmacokinetic differences compared with healthy subjects. Creatinine clearance explained most of the population variance in the plasma clearance of LVX. Switching from intravenous to oral delivery of LVX had economic benefits. Addition of tamsulosin to the LVX regimen was beneficial for patients with bacterial prostatitis because tamsulosin could increase the maximal concentration of LVX in prostatic tissue. Coadministration of multivalent cation-containing drugs and LVX should be avoided. For patients receiving warfarin and LVX concomitantly, caution is needed regarding potential changes in the international normalized ratio; however, it is unnecessary to seek alternatives to LVX for the sake of avoiding drug interaction with warfarin. It is unnecessary to proactively reduce the dose of cyclosporin or tacrolimus when comedicated with LVX. Transporters such as organic anion-transporting polypeptide 1A2, P-glycoprotein, human organic cation transporter 1, and multidrug and toxin extrusion protein 1 are involved in the pharmacokinetics of LVX. CONCLUSION: Personalized LVX therapeutics are necessary for the sake of better safety, clinical success, and avoidance of resistance. New findings regarding individual dosing of LVX in special patient populations and active transport mechanisms in vivo are opening up new horizons in clinical practice.

19.
Ther Clin Risk Manag ; 10: 17-26, 2014.
Article in English | MEDLINE | ID: mdl-24379677

ABSTRACT

BACKGROUND: Coadministration of 1,4-dihydropyridine calcium channel blockers (DHP-CCBs) with statins (or 3-hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase inhibitors) is common for patients with hypercholesterolemia and hypertension. To reduce the risk of myopathy, in 2011, the US Food and Drug Administration (FDA) Drug Safety Communication set a new dose limitation for simvastatin, for patients taking simvastatin concomitantly with amlodipine. However, there is no such dose limitation for atorvastatin for patients receiving amlodipine. The combination pill formulation of amlodipine/atorvastatin is available on the market. There been no systematic review of the pharmacokinetic drug-drug interaction (DDI) profile of DHP-CCBs with statins, the underlying mechanisms for DDIs of different degree, or the corresponding management of clinical risk. METHODS: The relevant literature was identified by performing a PubMed search, covering the period from January 1987 to September 2013. Studies in the field of drug metabolism and pharmacokinetics that described DDIs between DHP-CCB and statin or that directly compared the degree of DDIs associated with cytochrome P450 (CYP)3A4-metabolized statins or DHP-CCBs were included. The full text of each article was critically reviewed, and data interpretation was performed. RESULTS: There were three circumstances related to pharmacokinetic DDIs in the combined use of DHP-CCB and statin: 1) statin is comedicated as the precipitant drug (pravastatin-nimodipine and lovastatin-nicardipine); 2) statin is comedicated as the object drug (isradipine-lovastatin, lacidipine-simvastatin, amlodipine-simvastatin, benidipine-simvastatin, azelnidipine- simvastatin, lercanidipine-simvastatin, and amlodipine-atorvastatin); and 3) mutual interactions (lercanidipine-fluvastatin). Simvastatin has an extensive first-pass effect in the intestinal wall, whereas atorvastatin has a smaller intestinal first-pass effect. The interaction with simvastatin seems mainly driven by CYP3A4 inhibition at the intestinal level, whereas the interaction with atorvastatin is more due to hepatic CYP3A4 inhibition. The interaction of CYP3A4 inhibitor with simvastatin has been more pronounced compared with atorvastatin. From the current data, atorvastatin seems to be a safer CYP3A4-statin for comedication with DHP-CCB. There is no convincing evidence that amlodipine is an unusual DHP-CCB, either as a precipitant drug or as an object drug, from the perspective of CYP3A4-mediated drug metabolism. Amlodipine may have interactions with CYP3A5 in addition to CYP3A4, which may explain its particular characteristics in comparison with other DHP-CCBs. The degree of DDIs between the DHP-CCB and statin and the clinical outcome depends on many factors, such as the kind of statin, physicochemical proprieties of the DHP-CCB, the dose of either the precipitant drug or the object drug, the sex of the patient (eg, isradipine-lovastatin), route of drug administration (eg, oral versus intravenous nicardipine-lovastatin), the administration schedule (eg, nonconcurrent dosing method versus concurrent dosing method), and the pharmacogenetic status (eg, CYP3A5-nonexpressers versus CYP3A5-expressers). CONCLUSION: Clinical professionals should enhance risk management regarding the combination use of two classes of drugs by increasing their awareness of the potential changes in therapeutic efficacy and adverse drug reactions, by rationally prescribing alternatives, by paying attention to dose adjustment and the administration schedule, and by review of the appropriateness of physician orders. Further study is needed - the DDIs between DHP-CCBs and statins have not all been studied in humans, from either a pharmacokinetic or a clinical perspective; also, the strength of the different pharmacokinetic interactions of DHP-CCBs with statins should be addressed by systematic investigations.

20.
Int J Pharm ; 460(1-2): 101-7, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24262988

ABSTRACT

2-Phenoxy-indan-1-one derivatives (PIOs) are a series of novel central-acting cholinesterase inhibitors for the treatment of Alzheimer's disease (AD). The adequate distribution of PIOs to the central nervous system (CNS) is essential for its effectiveness. However, articles related with their permeability in terms of CNS penetration across the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) have not been found. This study was undertaken to evaluate the in vitro BBB and BCSFB transport of PIOs using Madin-Darby canine kidney (MDCK), MDCK-MDR1 and Z310 cell line models. As a result, the transepithelial transport of PIOs did not differ between MDCK and MDCK-MDR1, and the result suggested that PIOs were not substrates for P-gp, which means that multidrug resistance (MDR) function would not affect PIOs absorption and brain distribution. High permeability of PIOs in Z310 was found and it suggested that PIOs had high brain uptake potential. The experiment also showed that PIOs had inhibitory effects on the MDR1-mediated transport of Rhodamine123 with an IC50 value of 40-54 µM. And we suggested that 5,6-dimethoxy-1-indanone might be the pharmacophoric moiety of PIOs that interacts with the binding site of P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Indans/pharmacology , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Biological Transport , Cell Line , Dogs , Humans , Indans/chemistry , Madin Darby Canine Kidney Cells , Permeability , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...