Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biochem J ; 479(5): 629-640, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35175311

ABSTRACT

Iodide (I-) is crucial to thyroid function, and its regulation in thyrocytes involves ion transporters and reactive oxygen species (ROS). However, the extent of 2Cl-/H+ exchanger (ClC-3) involvement in the iodide (I-) efflux from thyrocytes remains unclear. Therefore, we examined the effects of ClC-3 on I- efflux. ClC-3 expression was found to significantly alter the serum TT3 and TT4 concentrations in mice. We further found that excess I- stimulation affected ClC-3 expression, distribution, and I- efflux in FRTL-5 cells. Immunofluorescence analyses indicated that ClC-3 mainly accumulated in the cell membrane and co-localized with ß-tubulins after 24 h of excess I- treatment, and that this process depended on ROS production. Thus, ClC-3 may be involved in I- efflux at the apical pole of thyrocytes via excess I--induced ROS production and ß-tubulin polymerization. Our results reveal novel insights into the role of ClC-3 in I- transport and thyroid function.


Subject(s)
Chloride Channels/metabolism , Thyroid Epithelial Cells , Animals , Biological Transport , Iodides , Mice , Protons , Reactive Oxygen Species , Tubulin
2.
Channels (Austin) ; 15(1): 516-527, 2021 12.
Article in English | MEDLINE | ID: mdl-34414859

ABSTRACT

Estradiol regulates thyroid function, and chloride channels are involved in the regulation of thyroid function. However, little is known about the role of chloride channels in the regulation of thyroid functions by estrogen. In this study, the effects of estrogen on chloride channel activities in human thyroid Nthy-ori3-1 cells were therefore investigated using the whole cell patch-clamp technique. The results showed that the extracellular application of 17ß-estradiol (E2) activated Cl- currents, which reversed at a potential close to Cl- equilibrium potential and showed remarkable outward rectification and an anion permeability of I- > Br- > Cl- > gluconate. The Cl- currents were inhibited by the chloride channel blockers, NPPB and tamoxifen. Quantitative Real-time PCR results demonstrated that ClC-3 expression was highest in ClC family member in Nthy-ori3-1 cells. The down-regulation of ClC-3 expression by ClC-3 siRNA inhibited E2-induced Cl- current. The Cl- current was blocked by the estrogen receptor antagonist, ICI 182780 (fulvestrant). Estrogen receptor alpha (ERα) and not estrogen receptor beta was the protein expressed in Nthy-ori3-1 cells, and the knockdown of ERα expression with ERα siRNA abolished E2-induced Cl- currents. Estradiol can promote the accumulation of ClC-3 in cell membrane. ERα and ClC-3 proteins were partially co-localized in the cell membrane of Nthy-ori3-1 cells after estrogen exposure. The results suggest that estrogen activates chloride channels via ERα in normal human thyroid cells, and ClC-3 proteins play a pivotal role in the activation of E2-induced Cl- current.


Subject(s)
Estrogen Receptor alpha , Thyroid Gland , Chloride Channels/genetics , Chlorides/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Humans , Thyroid Gland/metabolism
3.
Biochem Biophys Res Commun ; 526(3): 592-598, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32247607

ABSTRACT

Extracellular acidification, playing a promoting role in the process of acute pancreatitis, has been reported to activate Cl- channels in several types of cells. However, whether extracellular acidification aggravates acute pancreatitis via activating Cl- channels remains unclear. Here, we investigated the effects of extracellular acidification on Cl- channels in rat pancreatic acinar AR42J cells using whole-cell patch-clamp recordings. We found that extracellular acidification induced a moderately outward-rectified Cl- current, with a selectivity sequence of I- > Br- ≥ Cl- > gluconate-, while intracellular acidification failed to induce the currents. The acid-sensitive currents were inhibited by Cl- channel blockers, 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate and 5-Nitro-2-(3-phenylpropylamino) benzoic acid. After ClC-3 was silenced by ClC-3 shRNA, the acid-sensitive Cl- currents were attenuated significantly, indicating that ClC-3 plays a vital role in the induction of acid-sensitive Cl- currents. Extracellular acid elevated the intracellular level of reactive oxygen species (ROS) significantly, prior to inducing Cl- currents. When ROS production was scavenged, the acid-sensitive Cl- currents were abolished. Whereas, the level of acid-induced ROS was unaffected with silence of ClC-3. Our findings above demonstrate that extracellular acidification induces a Cl- current in pancreatic acinar cells via promoting ROS generation, implying an underlying mechanism that extracellular acidification might aggravate acute pancreatitis through Cl- channels.


Subject(s)
Acinar Cells/metabolism , Chloride Channels/metabolism , Pancreas/metabolism , Reactive Oxygen Species/metabolism , Acinar Cells/cytology , Animals , Cell Line , Chlorides/metabolism , Extracellular Space/metabolism , Hydrogen-Ion Concentration , Pancreas/cytology , Patch-Clamp Techniques , Rats
4.
Biochem J ; 476(9): 1323-1333, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30992317

ABSTRACT

Nutrient deficiency develops frequently in nasopharyngeal carcinoma cell (CNE-2Z) due to the characteristics of aggregation and uncontrolled proliferation. Therefore, starvation can induce autophagy in these cells. Chloride channel 3 (ClC-3), a member of the chloride channel family, is involved in various biological processes. However, whether ClC-3 plays an important role in starvation-induced autophagy is unclear. In this study, Earle's balanced salt solution (EBSS) was used to induce autophagy in CNE-2Z cells. We found that autophagy and the chloride current induced by EBSS were inhibited by chloride channel blockers. ClC-3 knockdown inhibited the degradation of LC3-II and P62. Furthermore, when reactive oxygen species (ROS) generation was suppressed by antioxidant N-acetyl-l-cysteine (L-NAC) pretreatment, EBSS-induced autophagy was inhibited, and the chloride current was unable to be activated. Nevertheless, ClC-3 knockdown had little effect on ROS levels, indicating that ROS acted upstream of ClC-3 and that both ROS and ClC-3 participated in EBSS-induced autophagy regulation in CNE-2Z.


Subject(s)
Autophagic Cell Death , Chloride Channels/metabolism , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/metabolism , Neoplasm Proteins/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation , Acetylcysteine/pharmacology , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Ion Transport/drug effects , Microtubule-Associated Proteins/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , RNA-Binding Proteins/metabolism
5.
J Hematol Oncol ; 11(1): 115, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30217218

ABSTRACT

BACKGROUND: Recently, many potential prognostic biomarkers for gastric cancer (GC) have been identified, but the prognosis of advanced GC patients remains poor. Chloride channels are promising cancer biomarkers, and their family member chloride channel-3 (CLC-3) is involved in multiple biological behaviors. However, whether CLC-3 is a prognostic biomarker for GC patients is rarely reported. The molecular mechanisms by which CLC-3 is regulated in GC are unclear. METHODS: The expression of CLC-3 and XRCC5 in human specimens was analyzed using immunohistochemistry. The primary biological functions and pathways related to CLC-3 were enriched by RNA sequencing. A 5'-biotin-labeled DNA probe with a promoter region between - 248 and + 226 was synthesized to pull down CLC-3 promoter-binding proteins. Functional studies were detected by MTS, clone formation, wound scratch, transwell, and xenograft mice model. Mechanistic studies were investigated by streptavidin-agarose-mediated DNA pull-down, mass spectrometry, ChIP, dual-luciferase reporter assay system, Co-IP, and immunofluorescence. RESULTS: The results showed that CLC-3 was overexpressed in human GC tissues and that overexpression of CLC-3 was a poor prognostic biomarker for GC patients (P = 0.012). Furthermore, higher expression of CLC-3 was correlated with deeper tumor invasion (P = 0.006) and increased lymph node metastasis (P = 0.016), and knockdown of CLC-3 inhibited cell proliferation and migration in vitro. In addition, X-ray repair cross-complementing 5 (XRCC5) was identified as a CLC-3 promoter-binding protein, and both CLC-3 (HR 1.671; 95% CI 1.012-2.758; P = 0.045) and XRCC5 (HR 1.795; 95% CI 1.076-2.994; P = 0.025) were prognostic factors of overall survival in GC patients. The in vitro and in vivo results showed that the expression and function of CLC-3 were inhibited after XRCC5 knockdown, and the inhibition effects were rescued by CLC-3 overexpression. Meanwhile, the expression and function of CLC-3 were promoted after XRCC5 overexpression, and the promotion effects were reversed by the CLC-3 knockdown. The mechanistic study revealed that knockdown of XRCC5 suppressed the binding of XRCC5 to the CLC-3 promoter and subsequent promoter activity, thus regulating CLC-3 expression at the transcriptional level by interacting with PARP1. CONCLUSIONS: Our findings indicate that overexpression of CLC-3 is regulated by XRCC5 and is a poor prognostic biomarker for gastric cancer. Double targeting CLC-3 and XRCC5 may provide the promising therapeutic potential for GC treatment.


Subject(s)
Chloride Channels/biosynthesis , Ku Autoantigen/metabolism , Stomach Neoplasms/metabolism , Aged , Animals , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Chloride Channels/genetics , Disease Progression , Female , Heterografts , Humans , Ku Autoantigen/genetics , Male , Mice , Neoplasm Staging , Paraffin Embedding , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
6.
Clin Exp Pharmacol Physiol ; 45(10): 1019-1027, 2018 10.
Article in English | MEDLINE | ID: mdl-29884989

ABSTRACT

Zoledronic acid (ZA), a third-generation bisphosphonate, has been applied for treatment of bone metastases caused by malignant tumors. Recent studies have found its anti-cancer effects on various tumor cells. One of the mechanisms of anti-cancer effects of ZA is induction of apoptosis. However, the mechanisms of ZA-induced apoptosis in tumor cells have not been clarified clearly. In this study, we investigated the roles of chloride channels in ZA-induced apoptosis in nasopharyngeal carcinoma CNE-2Z cells. Apoptosis and chloride current were induced by ZA and suppressed by chloride channel blockers. After the knockdown of ClC-3 expression by ClC-3 siRNA, ZA-induced chloride current and apoptosis were significantly suppressed, indicating that the chloride channel participated in ZA-induced apoptosis may be ClC-3. When reactive oxygen species (ROS) generation was inhibited by the antioxidant N-acetyl-L-cysteine (L-NAC), ZA-induced apoptosis and chloride current were blocked accordingly, suggesting that ZA induces apoptosis through promoting ROS production and subsequently activating chloride channel.


Subject(s)
Apoptosis/drug effects , Chloride Channels/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Reactive Oxygen Species/metabolism , Zoledronic Acid/pharmacology , Biological Transport/drug effects , Cell Line, Tumor , Chloride Channels/deficiency , Chloride Channels/genetics , Chlorides/metabolism , Gene Knockdown Techniques , Humans , Hydrogen Peroxide/metabolism
7.
Biomed Pharmacother ; 91: 21-30, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28445830

ABSTRACT

Neoplasm cells from patients with chronic myeloid leukemia (CML) interact with stromal cells of the surrounding microenvironment. Bone marrow stromal cells (BMSCs) represent the main population in CML marrow stroma, which may play a key role in disease support and progression. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism that is associated with cell proliferation and resistance to apoptosis. We herein up-regulated HO-1 expression of BMSCs and evaluated whether BMSCs influenced K562 cells survival. BMSCs were isolated from the bone marrow of normal people and CML patients. Following co-culture of BMSCs and K562 cells, up-regulating HO-1 expression in bone marrow stromal cells increased the imatinib (IM) resistance of K562 cells, whereas the apoptosis of K562 cells was effectively promoted without BMSCs co-culture. The protection may be mediated by CXCL12 (stromal derived factors 1, SDF-1)/CXCR4 signaling. The CXCL12/CXCR4 interaction significantly enhanced the phosphorylation of AKT. As far as drug resistance was concerned, BMSCs counteracted the cytotoxic effect of IM administration in vitro, and they protected K562 cells from the apoptosis induced by kinase inhibitor IM. The regulated HO-1 expression of BMSCs provides a new putative target for CML therapy.


Subject(s)
Bone Marrow Cells/metabolism , Cellular Microenvironment , Drug Resistance, Neoplasm , Heme Oxygenase-1/metabolism , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Adolescent , Adult , Aged , Apoptosis/drug effects , Bone Marrow Cells/drug effects , Cell Line, Tumor , Cellular Microenvironment/drug effects , Chemokine CXCL12/metabolism , Chromones/pharmacology , Cytoprotection/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , Imatinib Mesylate/pharmacology , Male , Middle Aged , Morpholines/pharmacology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Recurrence , Signal Transduction/drug effects , Solubility , Stromal Cells/drug effects , Stromal Cells/metabolism , Survival Analysis , Up-Regulation/drug effects , Young Adult
8.
Oncotarget ; 7(33): 53679-53701, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27447561

ABSTRACT

The correlation between Heme oxygenase-1 (HO-1) and dominant-negative Ikaros isoform 6 (IK6) is unclear. Firstly, we detected that IK6 existed in 20 of 42 (47.6%) adult BCR-ABL1-positive B-lineage acute lymphoblastic leukemia (BCR-ABL1-positive B-ALL) by using reverse transcribed polymerase chain reaction (PCR) and nucleotide sequencing. IK6-positive patients had an unfavorable outcome compared with IK6-negative ones. Further study showed that the level of HO-1 expression was higher in IK6-positive patients' samples than that in IK6-negative ones. And there was a strong correlation between the expression of IK6 and HO-1. The growth of primary CD34+ leukemic cells derived from our IK6-positive patients' pool was prohibited by silencing HO-1, further promoting their apoptosis. Furthermore, primary CD34+ leukemic cells derived from IK6-positive patients shown poor responses to imatinib in comparison with wild-type (IK1) patients, suggesting that the expression of IK6 resisted to imatinib in adult BCR-ABL1-positive B-ALL. Importantly, inhibition of HO-1 also increased their sensitivity to tyrosine kinase inhibitors (TKIs). Finally, we found that IK6 activated downstream STAT5, and HO-1 was one of the downstream target genes of STAT5. In conclusion, HO-1 is an essential survival factor in BCR-ABL1-positive B-ALL with IK6, and targeting HO-1 can attenuate the negative impact of IK6.


Subject(s)
Heme Oxygenase-1/metabolism , Ikaros Transcription Factor/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adolescent , Adult , Aged , Disease-Free Survival , Female , Fusion Proteins, bcr-abl/genetics , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Young Adult
9.
Transpl Immunol ; 37: 10-17, 2016 07.
Article in English | MEDLINE | ID: mdl-27168057

ABSTRACT

The high incidence of acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Grades III and IV aGVHD are the leading causes of death in allo-HSCT recipients. Heme oxygenase-1(HO-1) has anti-inflammatory and immune-regulatory functions. In this study, we evaluated the none GVHD and grade I-IV patients samples which were collected at the first re-examination after successful allo-HSCT, we found that expressions of HO-1 mRNA in the bone marrow and peripheral blood mononuclear cells of allo-HSCT recipients who had subsequent non-GVHD and grade I aGVHD were significantly higher than those in patients with Grade III-IV aGVHD. We then demonstrated that enhanced expression of HO-1 in target organs by infusing HO-1-gene-modified Mesenchymal stem cells (MSCs) alleviated the clinical and histopathological severity of aGVHD in experimental mice. Flow cytometry revealed a higher expression of Treg cells and a lower expression of TH17 cells in splenic and lymph node tissues of mice with enhanced HO-1 expression, as compared to that in the aGVHD mice. This was further substantiated by lower expression levels of ROR-Υt and IL-17A mRNA, and higher levels of Foxp3 mRNA in the splenic tissue of mice with enhanced HO-1 expression. Our results indicate that high expression of HO-1 may reduce the severity of aGVHD by regulation of the TH17/Treg balance.


Subject(s)
Bone Marrow/metabolism , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Heme Oxygenase-1/metabolism , Leukocytes, Mononuclear/metabolism , Mesenchymal Stem Cells/physiology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Acute Disease , Animals , Cells, Cultured , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Heme Oxygenase-1/genetics , Immunomodulation , Interleukin-17/genetics , Interleukin-17/metabolism , Male , Mesenchymal Stem Cell Transplantation , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Transplantation, Homologous
10.
Cancer Biol Ther ; 17(6): 625-34, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27082496

ABSTRACT

The bone marrow microenvironment plays an important role in the development and progression of AML. Leukemia stem cells are in a hypoxic condition, which induces the expression of HIF-1α. Aberrant activation of HIF-1α is implicated in the poor prognosis of patients with acute myeloid leukemia (AML). Herein, we investigated the expression of HIF-1α in AML and tested 2-methoxyestradiol (2ME2) as a candidate HIF-1α inhibitor for the treatment of AML. We found that HIF-1α was overexpressed in AML. HIF-1α suppression by 2ME2 significantly induced apoptosis of AML cells, and it outperformed traditional chemotherapy drugs such as cytarabine. At the same time, 2ME2 downregulated the transcriptional levels of VEGF, GLUT1 and HO-1 in cellular assays. Additionally, 2ME2 displayed antileukemia activity in bone marrow blasts from AML patients, but showed little effect on normal cells. 2ME2-induced activation of mitochondrial apoptotic pathway is mediated by reactive oxygen species (ROS), which decreased the slight effect of drug on normal cells. Our data show that supression of HIF-1α expression significantly reduced the survival of AML cell lines, suggesting that 2ME2 may represent a powerful therapeutic approach for patients with AML.


Subject(s)
Estradiol/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondria/metabolism , 2-Methoxyestradiol , Adolescent , Adult , Aged , Apoptosis , Cell Death , Cell Line, Tumor , Down-Regulation , Estradiol/metabolism , Female , Humans , Male , Middle Aged , Young Adult
11.
Leuk Res ; 39(5): 544-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25828744

ABSTRACT

There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.


Subject(s)
Apoptosis/genetics , Heme Oxygenase-1/physiology , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/physiology , Proto-Oncogene Proteins c-jun/physiology , Adult , Aged , Aged, 80 and over , Animals , Down-Regulation , Female , HL-60 Cells , Humans , Male , Mice , Mice, SCID , Middle Aged , U937 Cells , Young Adult
12.
Oncol Lett ; 10(5): 3137-3144, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26722301

ABSTRACT

Heme oxygenase-1 (HO-1) is an inducible isoform of HO that is activated in response to oxidative stress and has anti-apoptotic and pro-proliferative effects on leukemia cells. RET, a tyrosine kinase receptor; its expression levels are associated with the differentiation degree of acute myelocytic leukemia (AML) cells. The promyelocytic leukemia (PML) gene inhibits cell proliferation and tumor growth, participates in the differentiation of hematopoietic progenitor cells and induces cell apoptosis. However, the association between the expression levels of HO-1, RET and PML genes and the risk stratification of AML and prognosis have not previously been reported. In the present study, HO-1 was expressed in the human AML Kasumi-1, HL-60 and THP-1 cell lines, and HO-1 expression was regulated by Hemin (20 µmol/l) and ZnPPIX (10 µmol/l). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that expression of RET and PML were positively and negatively correlated with HO-1 expression, respectively. Bone marrow samples (18 favorable, 55 intermediate, 15 adverse and 2 unknown karyotype AML cases and 20 healthy donors) were collected from 90 randomly selected AML patients upon their first visit. The mRNA and protein expression of HO-1, RET and PML in samples was detected by RT-qPCR and western blot analysis. At the mRNA level, the adverse group expressed significantly higher levels of HO-1 and RET compared with the levels in the favorable and normal groups. The PML mRNA expression levels in adverse patient samples was lower compared with those of the intermediate group and favorable group. Western blot analysis demonstrated that the expression levels of HO-1, RET and PML proteins in all risk groups exhibited the same pattern of expression as was observed for the mRNA levels. The overall survival and relapse-free survival rates were shortest in AML patients with high HO-1 expression (Kaplan-Meier; log-rank, P<0.01). The results of the present study therefore indicate that HO-1, RET and PML may be critical in the risk-stratification and prognosis of AML. However, additional samples and clinical data should be collected and analyzed in order to provide stronger evidence for this hypothesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...