Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(42): 38885-38894, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901571

ABSTRACT

A corolla-shaped Schiff base polymer was synthesized from terephthalaldehyde (TPAD), glutaraldehyde (GA), and p-phenylenediamine (PPD) by block copolymerization, and Schiff base iron complexes were formed by doping with FeCl3. The microscopic morphology, crystal structure, and elemental valence state were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Comparing the change of conductivity before and after Fe3+ doping, it was found that the conductivity did not break away from the category of insulator, and the doped sample is a paramagnetic material. Morphological changes were observed by adjusting the ratio of GA to TPAD, and it was found that the corolla-like structure was most complete when the ratio of GA to TPAD was 2:1, and its Schiff base iron complex absorbed waves better. At a thickness of 3 mm, the absorption effect can reach below -10 dB at 12.44-15.16 GHz, and the maximum absorption value is -45.07 dB at a thickness of 3.8 mm; it is an organic absorbing agent with excellent impedance matching and absorbing properties.

2.
ACS Appl Mater Interfaces ; 12(20): 23252-23260, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32343542

ABSTRACT

Ordered mesoporous carbon (OMC) is considered to be a prospective carbon-based material for microwave absorption because of its abundant well-ordered mesoporous structures, high specific surface area, numerous active sites, and facile preparation process. However, its development has been seriously hindered by its poor impedance-matching characteristic. Herein, silica-modified OMC composites with a designable impedance-matching transition layer are successfully fabricated via a self-assembly method and succeeding calcination treatment. In addition, the silica in OMC@SiO2 composites can maintain the mesoporous structure, which facilitates the scattering and reflection of microwaves in the tunnel structure. The as-prepared sample OMC-5@SiO2 exhibits a minimum reflection loss (RL) value of -40.7 dB at 10.8 GHz with 2 mm and an effective absorption bandwidth (RL ≤ -10 dB) of 4.8 GHz with a thinner absorber thickness of 1.5 mm. We believe that the as-prepared OMC@SiO2 composites can be prospective candidates as high-efficiency and lightweight microwave absorbers.

3.
RSC Adv ; 9(17): 9718-9728, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-35520714

ABSTRACT

Porous carbon has been expected to be a potential candidate as a lightweight and efficient microwave absorber. Nano-porous carbon carbonized directly from a walnut shell exhibits narrow microwave absorption frequency bandwidth, while the activation process can adjust the pore structure and optimize the microwave absorption performance. Herein, porous carbon materials were successfully prepared using walnut shells as precursors and ZnCl2 as the activating agent. The superior microwave absorption performances of the as-prepared samples could be attributed to the well-developed pore structures and the enhanced dielectric loss capacities of the samples. The interfacial polarization in the walls of the pores and the defects in the samples significantly contributed to the enhancement of the dielectric loss capacities of the samples. In this work, the broadband microwave absorbing porous carbon exhibited an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.2 GHz (ranging from 10.8 GHz to 18.0 GHz) when the absorber thickness was 2.5 mm. In addition, an effective absorption bandwidth of 6.0 GHz (ranging from 11.4 GHz to 17.4 GHz) could also be achieved when the absorber thickness was only 2.0 mm. The samples exhibited low densities, strong microwave absorption performances and wide effective absorption bandwidths with thin absorber thicknesses, due to which they have a great potential as lightweight and efficient microwave absorbers.

4.
Sci Rep ; 7(1): 1584, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28484217

ABSTRACT

Graphene oxide (GO) was rarely used as microwave absorption (MA) material due to its lower dielectric loss compared with reduced GO (RGO). However, the characteristics of low conductivity, light weight, and large surface area were beneficial to the impedance matching for absorbers already containing highly conductive metal materials. Cu@Ni nanowires are promising MA materials due to the desired dielectric loss from copper and excellent magnetic loss from nickel. However, the high density was an impediment to its further application. Combining Cu@Ni nanowires with GO should be an effective solution to decrease the absorber's density and improve its MA properties. Herein, we demonstrated that Cu@Ni nanowires/GO composites exhibited enhanced MA capacities compared with Cu@Ni nanowires or GO alone, and the minimum reflection loss reached -42.8 dB at 16.9 GHz with a thickness of 2.1 mm. The enhanced MA performance mainly originated from good impedance matching, as a result of the addition of low conductivity of GO. To confirm this point, the MA performance of Cu@Ni nanowires/RGO was studied, and unsurprisingly, weak MA performance was obtained. Our work provides a new strategy to decrease the density, broaden the frequency band and tune MA performance of composites.

5.
Ultrason Sonochem ; 33: 106-117, 2016 11.
Article in English | MEDLINE | ID: mdl-27245962

ABSTRACT

Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

6.
Nanotechnology ; 27(12): 125602, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26890585

ABSTRACT

Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu(2+) and Ni(2+), the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

7.
Ultrason Sonochem ; 30: 103-12, 2016 May.
Article in English | MEDLINE | ID: mdl-26611814

ABSTRACT

Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

SELECTION OF CITATIONS
SEARCH DETAIL
...